Review of Environmental Factors Hunter-Central Coast REZ Network Infrastructure

Appendix H - Contamination Reports

Wired for good."

New Sub-Transmission Substation Lot 9 DP250890 Hebden Road, Muswellbrook

> Prepared for Ausgrid

Project 224764.00 November 2023

Document History

Document details

Project No.	224764.00	Document No.	R.001.Rev0
Document title	Report on Prelimina	ary Site Investigation	
	New Sub-Transmis	sion Substation	
Site address	Lot 9 DP250890 Hebden Road, Muswellbrook		
Report prepared for	Ausgrid		
File name	224764.00.R.001.Rev0.contam.docx		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Patrick Heads	Glyn Eade	27 November 2023

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Paul Hurst, Ausgrid

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date	
Author Padnik Heads	27 November 2023	
Reviewer grove	27 November 2023	
/ / /		

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistemon Close Warabrook NSW 2304 PO Box 324 Hunter Region Mail Centre NSW 2310 Phone (02) 4960 9600

Executive Summary

Douglas Partners Pty Ltd (DP) has been engaged by Ausgrid to prepare this preliminary site investigation (contamination) (PSI) undertaken for a new sub-transmission substation for the site within Lot 9 DP250890 Hebden Road, Muswellbrook.

The objective of the PSI is to assess the potential for contamination at the site based on past and present land uses and activities and to comment on the need for further investigation and/or management with regard to the proposed development.

The scope of work for the PSI comprised a review of site history information (historical titles, historical aerial photos, Council information), a site walkover and preparation of a conceptual site model. Selected soil samples were collected from the geotechnical investigation boreholes for analysis of contaminants of concern. In addition, three groundwater monitoring wells were installed in selected boreholes as part of the geotechnical investigation. The wells were dry at the time of sampling.

The results of the PSI indicated that the site had formerly and current been used for agricultural purposes both prior to and following construction of Lake Lidell, which is located immediately south of the site. Identified contamination sources included the former agricultural site activities and the adjacent road and rail activities.

Based on the site history, site observations and the results of preliminary soil testing, the potential for gross contamination at the site is considered to be low. The site is likely to be suitable for the proposed industrial use.

Surface water testing of the adjacent Lake Lidell was conducted at the request of the client. The results of surface water testing indicated the absence of gross contamination in the water samples tested. Some slightly elevated concentrations of contaminants were identified in the surface water samples, including metals and low-level PFAS. The results of testing indicated some elevated metal concentrations, with identified contaminants commensurate with previous testing of Lake Lidell.

Table of Contents

Page

1.	Introduction1		
2.	Proposed Development1		
3.	Scope of Works		
4.	Site I	nformation	.3
5.	Enviro	onmental Setting	.3
6.	Site F	listory	.5
	6.1	Historical Aerial Photography	.5
	6.2	Title Deeds	.6
	6.3	Public Registers and Planning Records	.7
	6.4	Summary of Previous Assessment	.7
	6.5	Site History Integrity Assessment	.8
	6.6	Summary of Site History	.8
7.	Site V	Valkover	.8
	7.1	Observations	.8
8.	Prelin	ninary Conceptual Site Model	.9
9.	Samp	ling and Analysis Quality Plan	11
	9.1	Surface Water Sampling Rationale1	11
	9.2	Soil Sampling Rationale1	11
	9.3	Surface Water Sampling Rationale1	11
	9.4	Groundwater Well Installation Rationale1	12
10.	Site A	ssessment Criteria1	12
11.	Field	Work Results	12
	11.1	Subsurface Investigation Results1	12
	11.2	Groundwater Well Installation Results1	13
	11.3	Surface Water Testing Results1	13
	11.4	Laboratory Analytical Results1	14
12.	Discu	ssion1	14
	12.1	Soils1	14
	12.2	Surface Water1	14
	12.3	Data Quality Assurance and Quality Control1	15
13.	Revised Conceptual Site Model15		

14.	Conclusions and Recommendations	15
15.	References	16
16.	Limitations	17

Appendix A:	Drawings
Appendix B:	About this Report
Appendix C:	Historical Aerial Photos
Appendix D	Historical Titles
Appendix E	Site Photographs
Appendix F	Field Work Methodology
Appendix G	Site Assessment Criteria
Appendix H	Summary of Laboratory Testing
	Laboratory Reports
Appendix I	Borehole Logs
Appendix J:	Chain of Custody
	Sample Receipt

Report on Preliminary Site Investigation (Contamination) New Sub-Transmission Substation Lot 9 DP250890 Hebden Road, Muswellbrook

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by Ausgrid to prepare this preliminary site investigation (contamination) (PSI) conducted for a new sub-transmission substation for the site at Lot 9 DP250890 Hebden Road, Muswellbrook (hereinafter referred to as the 'site'). The site locality and layout are shown on Drawing 1, Appendix A.

The investigation was conducted with reference to DP's proposal 224764.00.P.001.Rev1 dated 18 September 2023.

The objective of the PSI is to assess the potential for contamination at the site based on past and present land uses and activities and to comment on the need for further investigation and/or management with regard to the proposed development. It is understood that the report will be used to support a development application (DA) for the proposed development.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Proposed Development

The proposed works within the substation site will comprise an outdoor switch yard and a prefabricated single storey metal clad and steel framed building (Mobile Equipment Room or 'MER') to be installed on top of foundations. The proposed works would also include two synchronous condensers and associated foundations and buildings.

Associated electrical infrastructure works may include either a new or a modified concrete bunded transformer bay with new masonry or precast fire wall, some steelwork framed cable support structures and a number of in-ground conduit banks and possibly concrete cable jointing pits.

The approximate layout of the proposed development is shown on Drawing 1, Appendix A.

3. Scope of Works

The scope of works conducted for this PSI included:

- Review of previous investigations conducted at the site (if any) and nearby sites by DP for translatable information;
- Review of available published information on the site, including geological, topographical, acid sulfate soil and soil landscape maps and registered groundwater bores;
- Site history review, including an aerial photograph review, council and EPA record searches, and a historical titles search, to assess the potential for contamination at the site.
- Site inspection by a DP engineer, as well as discussions with the site owner, to assess current and past site conditions and identify areas of potential contamination;
- Preliminary subsurface investigation and contamination testing, conducted in conjunction with a geotechnical assessment (reported under separate cover), comprising:
 - o Drilling 29 boreholes using a Hanjin 8-D track mounted drill rig equipped with a 100 mm diameter solid flight auger, drilled in conjunction with a concurrent geotechnical investigation at the site;
 - o Logging of subsurface conditions and observations of contaminants, where encountered;
 - o Collection of soil samples at regular intervals (0.0 to 0.1 m and 0.5 m);
 - o Screening of replicate soil samples with a calibrated photo-ionisation detector (PID) to assess for the presence of volatile organic compounds (VOC);
 - o Installation of three groundwater monitoring wells in drilled boreholes within the site to assess for the presence of groundwater and conduct a preliminary assessment of groundwater quality (if encountered)
 - o Laboratory testing of selected soil samples for the following:
 - Eight samples for metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), organochlorine pesticides (OCP), organophosphorus pesticides (OPP), polychlorinated biphenyls (PCB) and phenols;
 - Three samples for pH, electrical conductivity (EC), and cation exchange capacity (CEC); and
 - Six samples for aggressivity suite (pH, EC, sulfate, and chloride)
 - Collection of two surface water samples and subsequent laboratory testing of two samples for metals, TRH, PAH, OCP, PCB, nitrogen species (i.e. nitrate, nitrite, total nitrogen, TKN, ammonia), per- and polyfluorinated substances (PFAS), phosphorus (reactive and total), anions and cations, total suspended soils (TSS) and total dissolved soils (TDS), alkalinity and hardness, and pH and EC.
- Preparation of a preliminary conceptual site model (CSM) as required by NEPC (2013); and
- Preparation of this PSI report presenting the findings of the investigation.

4. Site Information

Site Address	Lot 9 DP250890 Hebden Road, Muswellbrook	
Legal Description	Lot 9 Deposited Plan 250890	
Approximate Area	8.9 ha	
Zoning	Zone RE1 Public Recreation	
Local Council Area	Muswellbrook Shire Council	
Current Use	Vacant – grazing land	
Surrounding Uses	North – Hebden Road and Main Northern Railway	
	East – vacant	
	South – Lake Lidell	
	West – Vacant, Lake Lidell and camping area	

Figure 1: Site Location (in yellow)

5. Environmental Setting

Regional Topography The site is located at the base of Well Mountain, the peak lying approximately 2.5 km north of the site and falls towards the site from approximately relative level (RL) 400 m relative to the Australian Height Datum (AHD). Rolling hill and gully formations are present immediately north, east and west with levels between approximately RL 130 and 170.

Site Topography	The site falls from the northern boundary, generally to the south, south-east and south-west at approximately 3% from a maximum RL 138 m AHD adjacent to Hebden Road, to approximately RL 128 m AHD adjacent to Lake Lidell.
Soil Landscape	Lidell Soil Landscape. This soil landscape covers undulating low hills and undulating hills in the Liddell Power Station area. The main soils are Yellow Soloths on slopes with some Yellow Solodic Soils on concave slopes. There are Earthy and Siliceous Sands on mid to lower slopes where the parent material is more sandy. There are some Red Soloths, Red Solodic Soils and Red Podzolic Soils. The soil types generally equate to upper sandy loam/loam topsoils underlain by clay, sandy clay and some sands.
Geology	Reference to the NSW Hunter Coalfield Regional geology sheet (1:100 000) indicates that the western portion of the site is underlain by Permian aged Mulbring Siltstone, part of the Maitland Group, which comprises siltstone, claystone and minor fine-grained sandstone. The eastern portion of the site is underlain by late Permian Saltwater Creek formation of the Whittingham Coal Measures which forms part of the Singleton Supergroup and is characterised by sandstone, siltstone and minor coaly bands
Acid Sulfate Soils	The site is outside a mapped area of acid sulfate soils
Surface Water	Lake Lidell is located adjacent to the southern site boundary and is considered to be the nearest sensitive receptor. Lake Lidell has been historically used as cooling water and discharge water body for the nearby Lidell Power Station
Groundwater	A search of the publicly available registered groundwater bore database indicated that the nearest registered groundwater well (GW0205243) is located approximately 1.6 km south-east of the site and is registered as a monitoring bore. Subsurface conditions in the borehole generally comprised clay to 1.5 m below the surface, underlain by sandstone and siltstone. The well was installed to 45 m depth and the standing water level was measured at 23.6 m below ground level (bgl). The well was installed in Archerfield Sandstone & Vane Subgroup of the Whittingham Coal Measures. Based on the regional topography and the inferred flow direction of nearby water courses, the anticipated flow direction of groundwater beneath the site is to the south towards Lake Lidell, the likely receiving surface water body for the groundwater flow path.

6. Site History

6.1 Historical Aerial Photography

Several historical aerial photographs were obtained from public databases. Extracts of the aerial photographs are included in Appendix C. A summary of key features observed for the site and surrounding land is presented in Table 1.

Year	Site	Surrounding Land Use
1958	The site was vacant and grassed and appeared to comprise grazing land	Surrounding land use appeared to comprise grazing land.
1974	The site was vacant and grassed and appeared to comprise grazing land	Lake Lidell was present immediately south of the site. A road was present on the northern boundary. A rail line was located to the north of the site. Surrounding land use appeared to comprise grazing land. Some small structures and unpaved tracks were present on the site to the west. A drainage line and surface water body were present to the east of the site, flowing from the rail corridor to Lake Lidell
1989	Similar to previous photograph	Similar to previous photograph
1993	Similar to previous photograph. Some tree growth in the far north-western corner of the site	Similar to previous photograph
1999	Similar to previous photograph. Increased tree growth in the north- western corner and northern site boundary	Similar to previous photograph. Some tree growth around the Lake Lidell shoreline, to the south of the site
2007	Similar to previous photograph. Increased tree growth in the far north- western corner of the site	Similar to previous photograph. Increased tree growth around the Lake Lidell shoreline, to the south of the site
2013	Similar to previous photograph. Increased tree growth in the far north- western corner of the site	Similar to previous photograph. Increased tree growth around the Lake Lidell shoreline, to the south of the site. Some additional structures to the west of the site. Some unpaved tracks and possible small structures were present within the rail corridor to the north of the site
2023	Similar to previous photograph. Increased tree growth in the far north- western corner of the site	Similar to previous photograph. Increased tree growth around the Lake Lidell shoreline, to the south of the site. Some additional structures are present to the west of the site.

 Table 1: Summary of Historical Aerial Photographs

6.2 Title Deeds

A historical title deeds search was used to obtain ownership and occupancy information including company names and the occupations of individuals. The title information can assist in the identification of previous land uses by the company names or the site owners and can, therefore, assist in establishing whether there were potentially contaminating activities occurring at the site. The results of the title deed search are provided in Appendix D. A summary of the title deeds and possible land uses (with reference to the aerial photographs and other historical searches) is presented in Table 2.

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations	Inferred Land Use
19.09.1924 (1924 to 1928)	Ernest Thompson (Farmer)	Grazing/agricultural
27.06.1928 (1928 to 1939)	Chard Hilston Neve (Farmer)	Grazing/agricultural
06.01.1939 (1939 to 1946)	Enid Raby Marshall (Married Woman)	Grazing/agricultural
23.08.1946 (1946 to 1950)	John Thomas Knight (Butcher)	Grazing/agricultural
19.01.1950 (1950 to 1950)	Ian Mills Bolte (Farmer)	Grazing/agricultural
02.05.1950 (1950 to 1953)	James Craig Tanner (Grazier)	Grazing/agricultural
09.10.1953 (1953 to 1959)	J.T. & P. Investments Pty Limited	Unknown
05.03.1959 (1959 to 1960)	Thomas Arthur Hall (Engineer)	Unknown
30.06.1960 (1960 to 1966)	J.T. & P. Investments Pty Limited	Unknown
06.04.1966 (1966 to 1976)	The Electricity Commission of New South Wales	Electrical infrastructure (Lake Lidell)
30.01.1976	Declared Crown Land	Public Reserve
30th January 1976	Added to Crown Reserve No.` 87994 for Public Recreation	Public Reserve
23rd November 1990	Reserve Trust	
	# The State of New South Wales	Public Reserve

Table 2: Historical Title Deeds

Notes to Table

Denotes current owner

6.3 Public Registers and Planning Records

EPA Notices available under Section 58 of the Contaminated Land Management Act (CLM Act)	There were no records of notices for the site or adjacent sites.
Database searched 10 October 2023	
Sites notified to EPA under Section 60 of the CLM Act	The site and adjacent sites were not listed as a notified contaminated site.
Database searched 10 October 2023	
Licences listed under Section 308 of the Protection of the Environment Operations Act 1997 (POEO Act)	There were no records issued to the site or adjacent sites.
Database searched 10 October 2023	
PFAS Investigation Sites listed on the EPA website	 The site was not listed or located adjacent to a site listed under: NSW EPA PFAS Investigation Program; Defence PFAS Investigation Program; Defence PFAS Management Program; Airservices Australia National PFAS Management Program.
Planning Certificate(s)	 Review of the Section 10.7 Parts (2) and (5) Certificate for the site indicated the following: The site is not within a mine subsidence area; The land is not affected by a policy adopted by Council that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk (other than flooding). Council is unaware of any other relevant matters that may affect the land to be issued under the Section 10.7 (Part 5) certificate.
Council Records Database searched 10 October 2023	Not available at the time of the search (i.e. no access permitted to on-line records).

6.4 Summary of Previous Assessment

The client provided a report titled 'Project Symphony, Bayswater Power Station, Stage 2 Environmental Site Assessment', prepared by ERM Australia Pty Ltd in 2014 (ERM 2014)The report was prepared for Macquarie Generation, with the objective of the assessment being to carry out a "Stage 2 Environmental

Site Assessment" for the Bayswater Power Station site to develop a baseline assessment of environmental conditions at the site and surrounds, including soil, groundwater, surface water and sediments. The relevant sections of the report included the testing of surface water within Lake Lidell, which is adjacent to the current subject site, and the testing of groundwater in the vicinity of the subject site.

Surace water analysis was generally conducted with the western portion of Lake Lidell. Groundwater well installation and groundwater sampling was conducted at two locations in the vicinity of the subject site (well BY_MW25 (approximately 420 m north-west of site) and BY_MW26 (approximately 500 m south-east of site), and were utilised in providing background conditions for the site.

Further discussion of the results of the surface water and groundwater testing is presented in Section 12.

6.5 Site History Integrity Assessment

The information used to establish the history of the site was sourced from reputable and reliable reference documents, many of which were official records held by Government departments/agencies. The databases maintained by various Government agencies potentially can contain high quality information, but some of these do not contain any data.

In particular, aerial photographs can provide high quality information that is generally independent of memory or documentation. They are only available at intervals of several years, so some gaps exist in the information from this source. The observed site features are open to different interpretations and can be affected by the time of day and/or year at which they were taken, as well as specific events, such as flooding. Care has been taken to consider different possible interpretations of aerial photographs and to consider them in conjunction with other lines of evidence.

6.6 Summary of Site History

The site history information suggests that the site was used for grazing purposes from at least the 1920s prior to the construction/expansion of Lake Lidell, which was likely to have occurred in the mid-1960s when the subject site was acquired by the Electricity Commission of NSW. Following this, the site has appeared to remain as a vacant public reserve.

7. Site Walkover

7.1 Observations

A site walkover was conducted by a DP environmental engineer on 25 September 2023. The general site topography was consistent with that described in Section 5. The site layout appears to have remained unchanged from the 2023 aerial photograph. The following key site features pertinent to the PSI were observed (refer to photographs provided in Appendix E).

The site generally comprised a vacant grassed area, falling to the south to south-west and south-east towards Lake Lidell (Photograph E1).

Mature trees were observed in the north-western portion of the site (Photograph E2). Hebden Road was

At the time of the walkover, the site was being used for cattle grazing. No structures were observed within the site area at the time of the walkover.

located immediately north of the northern site boundary (Photograph E3)

No obvious signs of potential contamination such as surface staining, odours, imported fill or distressed vegetation were observed during the site walkover.

8. Preliminary Conceptual Site Model

A preliminary conceptual site model (CSM) represents a theoretical representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site may become contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Potential Sources (S)

Based on the current investigation, the following potential sources of contamination and associated contaminants of potential concern (CoPC) have been identified.

- S1: Former agricultural use, including grazing. The site use may have been subject to the use of chemicals including pesticides, hydrocarbons and metals
 - o CoPC include metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine/organophosphorus pesticides (OCP/OPP), .
- S2: Adjacent road and rail corridor and associated runoff entering the site
 - o CoPC include lead, TRH, BTEX, PAH, PCB, OCP, OPP, metals.

Potential Receptors (R)

The following potential human receptors have been identified:

- R1: Current users [cattle management personnel];
- R2: Construction and maintenance workers;
- R3: End users [substation employees]; and
- R4: Adjacent site users [camping area].

The following potential environmental receptors have been identified:

- R5: Surface water [Lake Lidell, fresh water];
- R6: Groundwater; and
- R7: Terrestrial ecosystems.

Potential Pathways (P)

The following potential pathways in relation to human receptors have been identified:

- P1: Ingestion and dermal contact; and
- P2: Inhalation of dust and/or vapours.

The following potential pathways in relation to the environmental receptors have been identified:

- P3: Surface water run-off;
- P4: Lateral migration of groundwater providing base flow to water bodies;
- P5: Leaching of contaminants and vertical migration into groundwater; and
- P6: Inhalation, ingestion and absorption.

Summary of Potentially Complete Exposure Pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways (P1 to P6) between the above sources (S1 to S2) and receptors (R1 to R7) are provided in below Table 3.

Source and CoPC	Transport Pathway	Receptor	Risk Management Action
S1: Agricultural use - TRH, BTEX, PAH, OCP/OPP and metals S2: Adjacent road and rail - TRH, BTEX, PAH, OCP/OPP and metals	 P1: Ingestion and dermal contact P2: Inhalation of dust and/or vapours P2: Inhalation of dust and/or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and 	R1: Current users [cattle management personnel] R2: Construction and maintenance workers R3: End users [substation employees] R4: Adjacent site users [camping area]. R5: Surface water R6: Groundwater R7: Terrestrial ecosystems	A preliminary intrusive investigation is recommended to assess possible contamination including testing of the soils and surface water.
	absorption		

Table 3: Summary of Potentially Complete Exposure Pathways

9. Sampling and Analysis Quality Plan

9.1 Surface Water Sampling Rationale

At the request of the client, surface water sampling was undertaken from two locations in the vicinity of the site.

Locations LS1 and LS2 were positioned to provide background water quality of Lake Lidell.

A third location was proposed in the drainage line adjacent to the eastern site boundary to assess upslope surface water quality. There was no surface water at this location during the sampling event.

The general sampling methods are described in the field work methodology, included in Appendix F.

Surface water field monitoring was conducted at location LS1 using a calibrated water multimeter, capable of the measurement of pH, electrical conductivity, turbidity, temperature, oxidation/reduction potential (ORP) and dissolved oxygen. The results of field monitoring are presented in Section 11.3 below.

9.2 Soil Sampling Rationale

Subsurface test locations for the assessment were generally placed across the proposed area of development to target the locations of proposed structures and pavements. Contamination testing locations were based on site history information and the CSM with the rationale to support near-surface soils subject to former and current agricultural use and possible upgradient runoff areas. Borehole locations are shown on Drawing 1 provided in Appendix A.

Soil samples were collected from each borehole at depths of approximately 0.0 to 0.1 m and 0.5 m and changes in lithology or signs of contamination (if any).

The general sampling methods are described in the field work methodology, included in Appendix F.

9.3 Surface Water Sampling Rationale

At the request of the client, surface water sampling was conducted at two locations in the vicinity of the site.

Locations LS1 and LS2 were positioned to provide background water quality of Lake Lidell.

A third location was proposed in the drainage line adjacent to the eastern site boundary to assess upslope surface water quality. There was no surface water at this location during the sampling event.

The general sampling methods are described in the field work methodology, included in Appendix F.

Surface water field monitoring was conducted at location LS1 using a calibrated water multimeter, capable of measurement of pH, electrical conductivity, turbidity, temperature, oxidation/reduction potential (ORP) and dissolved oxygen. The results of field monitoring are presented in Section 11.3 below.

9.4 Groundwater Well Installation Rationale

In order to assess the presence of groundwater and current groundwater contamination status at the site and evaluate whether surrounding land uses have impacted on groundwater, three groundwater wells were installed across the site (MW5, MW23, and MW29). The well locations were selected based on the following rationale to provide substantial coverage of the site:

- MW5 is positioned towards the central to north-west portion of the site;
- MW23 is positioned towards the central south-east portion of the site; and
- MW29 is positioned towards the south-west portion of the site.

The well installation methods are described in the field work methodology, included in Appendix F.

The wells were attempted to be sampled on 20 October 2023, however, no groundwater was present at the time of sampling.

10. Site Assessment Criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 8) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic commercial / industrial land use scenario. The derivation of the SAC is included in Appendix G and the adopted SAC are listed on the summary analytical results tables in Appendix H.

11. Field Work Results

11.1 Subsurface Investigation Results

The borehole logs for this assessment are included in Appendix I. The logs recorded the following general sub-surface profile:

Topsoil / Clayey Silt:	Topsoil encountered in all boreholes from the surface to approximately 0.05 m below ground level (bgl). Clayey silt (brown) was also observed in Bores 2, 5, 6, 8, 9, 11, 23, 25, and 28 from 0.05 m bgl to depths ranging between 0.20 m to 0.60 m bgl.
Silty Clay / Sandy Clay:	A combination of brown to dark brown silty and sandy clays were observed in all boreholes from 0.05 m bgl to depths ranging between 0.9 m and 4.0 m bgl.

Siltstone:

Extremely weathered materials (siltstone) was encountered in Bores 2-3, 5, 8, 9, 20 to22, 24, 27, and 29 (depths between 0.9 m and 6.20 m bgl). Siltstone of very low to low strength was then observed in Bores 3, 20, 21, 24, 27, and 29 (depths between 3.00 m 10.30 m bgl), low to medium strength in Bore 20 (9.90 m to 10.30 m bgl), and medium to high strength in Bores 21, 24, 27, and 27A (depths between 8.00 m and 20.74 m bgl).

No obvious visual or olfactory evidence (e.g. staining, odours or free phase product) was observed during the investigation to suggest the presence of contamination within the soils at the site. The results of PID screening suggested the general absence of VOC in the screened samples, with all recorded values being less than 1 ppm.

No free groundwater was observed during the drilling of boreholes. It should be noted that groundwater levels are affected by factors such as climatic conditions and soil permeability and will therefore vary spatially, and with time

11.2 Groundwater Well Installation Results

Groundwater monitoring wells were installed in Bores 5, 23, and 29 on 27 September 2023, and did not contain groundwater upon groundwater sampling attempted on 20 October 2023. A summary of well installation details is included below in Table 4.

Well ID	Location of Monitoring WellGround Level * m (AHD)W		Well Length m (bgl)	SWL m (AHD)
MW5	Central north-west	137.0	4	-
MW23	Central south-east	136.5	4	-
MW29	South-west	132.4	10	-

Table 4: Summary of Well Installation on 27 September 2023

Notes:

*Surveyed by dGPS

SWL – standing water level

Based on previous investigations conducted in 2013 for Bayswater Power Station (Project Symphony) (ERM 2014), groundwater levels in Wells BY_MW25 [approx. 420 m northwest of site] and BY_MW26 [approx. 500 m southeast of site] were recorded as 8.2 m and 3.0 m bgl, respectively. Field parameters including potentially acidic, saline groundwater conditions were recorded.

11.3 Surface Water Testing Results

Locations LS1 and LS2 were positioned to provide background water quality of Lake Lidell.

The results of field parameter testing at location LS1 are presented in Table 5 below.

Location ID	Temp °C	рН	ORP (mV)	EC (mS/cm)		Dissolved Oxygen (mg/L)	Dissolved Oxyegn (%)
LS1	25.8	8.1	69	2.46	90	7.5	93.2

Table 5: Field Surface Water Parameters, LS1, 20 October 2023

11.4 Laboratory Analytical Results

The results of laboratory analysis are summarised in the following tables provided in Appendix H:

- Table H1: Summary of Results of Soil Analysis TRH, BTEX, PAH, Metals;
- Table H2: Summary of Results of Surface Water Analysis.

The laboratory certificates of analysis are also presented in Appendix H. Laboratory chain of custody and sample receipt information are provided in Appendix J.

12. Discussion

12.1 Soils

The analytical results for all contaminants tested in all samples were below the adopted SAC.

All concentrations for BTEX, phenol, OCP, OPP, PCB and phenols in soil were below the laboratory practical quantitation limits (PQL). BH6/0-0.1 indicated detectable concentrations above the PQL in some heavier TRH fractions, however, all concentrations were well below the adopted SAC. Similarly, BH2/0-0.1 reported detectable concentrations above the PQL for some PAH analytes, however, these detections were also well below the adopted SAC.

12.2 Surface Water

The analytical results for the surface water samples indicated that all tested analyte concentrations were below the SAC, except for:

- Boron at 1,300 μg/L in both LS1 and LS2, which exceeded the ANZG (2018) freshwater guideline for the protection of slightly to moderately disturbed freshwater aquatic ecosystems of 940 μg/L; and
- Copper at 3 μg/L in both LS1 and LS2, which exceeded the adopted freshwater guideline (ANZG, 2018) of 1.4 μg/L.
- Selenium at 6 μg/L in both LS1 and LS2 which exceeded the adopted freshwater guideline (ANZG, 2018) of 5 μg/L
- PFOS at 0.004 μg/L in both LS1 and LS2 which exceeded the adopted ecological 99% level of protection guideline (HEPA, 2020).

Referring to previous reporting on the site (ERM 2014), these elevated metal concentration reflected previous results of elevated concentrations of boron, selenium and copper in surface water samples across the area and may reflect groundwater conditions. It was reported in (ERM 2014) that metals including boron, cadmium, copper, nickel, lead, and zinc were detected at concentrations greater than the adopted health and ecological screening values for freshwater environments in groundwater samples. The samples were collected from BY_MW25 [approximately 420 m north-west of site] and BY_MW26 [approximately 500 m south-east of site] and were utilised in providing background conditions for the site.

12.3 Data Quality Assurance and Quality Control

Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

13. Revised Conceptual Site Model

The data collected for this PSI has generally confirmed that certain potential contaminant sources outlined in the CSM outlined in Section 8 pose a potentially complete pathway to the identified receptor(s) whilst others do not. No other sources of contamination have been identified as a result of the testing results and subsurface investigation. Surface water data suggests that some contaminants (i.e. boron, copper) may have migrated from surrounding land use activities (i.e. local coal-fired power stations), however, adverse impacts to the site are generally not anticipated. Consequently, the preliminary CSM described in Section 8 remains sufficient for the site.

14. Conclusions and Recommendations

The objective of this PSI was to assess the potential for contamination at the site based on past and present land uses and to comment on the need for further investigation and/or management with regard to the proposed development.

The data collected for this PSI indicated that potential contaminant sources exist (i.e. agricultural use and adjacent road and rail activities) as outlined in the CSM in Section 8.

Preliminary contamination testing of soils undertaken as part of this PSI suggest the general absence of gross contamination in soils at the locations tested.

Testing of surface water adjacent to the site suggested the absence of gross contamination in surface water as a result of previous site activities. Some slightly elevated contaminant concentrations were identified in surface water, however, the contaminants were commensurate with previous surface water testing in Lake Lidell reported in a previous assessment, (ERM, 2014) likely attributed to historical use of Lake Lidell as cooling water and waste output from the adjacent Lidell Power Station.

The results of this PSI along with preliminary contamination testing suggest that the site is likely to be suitable for the proposed industrial development from a contamination perspective.

The scope of work conducted does not constitute a Detailed Site Investigation for the assessment of contamination with reference to (NSW EPA, 2020). It is noted, however, that the potential for contamination on the subject site is considered to be low and further investigation is currently not warranted.. However, it is recommended that an Unexpected Finds Protocol (UFP) be prepared and implemented during the proposed development.

Unexpected finds would typically be able to be identified by visual or olfactory indicators and could include, inter alia:

- Waste materials in fill, including building and demolition waste;
- Fibrous cement fragments (e.g. asbestos-containing materials);
- Stained or odorous fill or soil;
- Ash and / or slag.

In the event of an unexpected find, a suitably qualified contaminated land consultant should be engaged to inspect the find and provide advice on the appropriate course of action.

15. References

ANZG. (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

ERM Australia Pty Ltd. (2014). *Project Symphony, Bayswater Power Station.* 0224193RP02: Environmental Resources Management Australia Pty Ltd.

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.

16. Limitations

Douglas Partners (DP) has prepared this report (or services) for this project at Lot 9 DP1193430 Hebden Road, Muswellbrook in accordance with DP's proposal dated 18 September 2023 and acceptance received from Paul Hurst dated xxx. The work was carried out under DP's Conditions of Engagement (or contract No xyz, dated). This report is provided for the exclusive use of Ausgrid for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the (geotechnical / environmental / groundwater) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

Drawing 1– Test Location Plan

NOTE:

- Drawing adapted from Metromap Image dated 12.02.2023 and plan by AECOM, Ref 265405, Sheet 01, AMD C dated 30.08,2023.
 Test locations are approximate only and were located using dPGS.

CLIENT: Ausgrid		TITLE:
OFFICE: Newcastle	DRAWN BY: PLH	
SCALE: 1:2000@A3	DATE: 27.November.2023	

Test Location Plan Geotechnical and Contamination Services Hebden Road, Muswellbrook, NSW

DP.QGIS.A3LandscapeDrawingLayout.3.26.3 - P.\224764.00 - MUSWELLBROOK, Eastern Hub Sub-Station\7.0 Drawings\7.2 Out\224764.00.D.001.Mapping.qgz

Locality Plan

Legend

- Borehole Location
- Surface Water Sample Location
- Lot Boundary
- Access Road
 - Approx Location of Proposed Switchyard
 - Approx Location of Proposed SynCons

224764.00 Project:

DRAWING No:

REVISION:

1 0

Appendix B

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

the time of construction as are indicated in the report; and

• The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

Terminology, Symbols and Abbreviations

Introduction to Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

Abbreviation Codes

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style XW. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example `PL` is used for plastic limit in the context of soil moisture condition, as well as in `PL(A)` for point load test result in the testing results column)).

Data Integrity Codes

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

Term	Description	Abbreviatio n Code
Core loss	No core recovery	[×] KL [×]
Unknown	Information was not available to allow classification of the property. For example, when auguring in loose, saturated sand auger cuttings may not be returned.	UK
No data	Information required to allow classification of the property was not available. For example, if drilling is commenced from the base of a hole predrilled by others	ND
Not Applicable	Derivation of the properties not appropriate or beyond the scope of the investigation. For example, providing a description of the strength of a concrete pavement	NA

Graphic Symbols

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.

intentionally blank

Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:

The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence its behaviour. The detailed description presents more information about composition, condition, structure, and origin of the soil.

Classification, naming and description of soils require the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

Particle Size	Particle	Behaviour Model		
Designation	Size (mm)	Behaviour	Approximate Dry Mass	
Boulder	>200	Excluded fro	om particle	
Cobble	63 - 200	behaviour model as "oversize"		
Gravel ¹	2.36 - 63	Caaraa		
Sand ¹	0.075 - 2.36	Coarse	>65%	
Silt	0.002 - 0.075	Fine	>35%	
Clay	<0.002			

- refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on its influence over the soil behaviour.

Component	Definition ¹	Relative P	roportion
Proportion Designation		In Fine Grained Soil	In Coarse Grained Soil
Primary	The component (particle size designation, refer above) which dominates the engineering behaviour of the soil	The clay/silt component with the greater proportion	The sand/gravel component with the greater proportion
Secondary	Any component which is not the primary, but is significant to the engineering properties of the soil	Any component with greater than 30% proportion	Any granular component with greater than 30%; or Any fine component with greater than 12%
Minor ²	Present in the soil, but not significant to its engineering properties	All other components	All other components

¹ As defined in AS1726-2017 6.1.4.4

² In the detailed material description, minor components are split into two further sub-categories. Refer "identification of minor components" below.

Composite Materials

In certain situations, a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example, "INTERBEDDED Silty CLAY AND SAND".

Soil Descriptions

Classification

The soil classification comprises a two character group symbol. The first character identifies the primary component. The second character identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer ASI726-2017 6.1.6 for further clarification.

Soil Name

For most soils, the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way, the soil name also describes the general composition and indicates the dominant behaviour of the material.

Component	Prominence in Soil Name
Primary	Noun (eg "CLAY")
Secondary	Adjective modifier (eg "Sandy")
Minor	No influence

¹ – for determination of component proportions, refer component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIAL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Materials of "fill" or "topsoil" origin are generally assigned a name derived from the primary/secondary component (where appropriate). In log descriptions this is preceded by uppercase "FILL" or "TOPSOIL". Origin uncertainty is indicated in the description by the characters (?), with the degree of uncertainty described (using the terms "probably" or "possibly" in the origin column, or at the end of the description).

Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

Minor Component	Relative Proportion		
Proportion Term	In Fine Grained Soil	In Coarse Grained Soil	
With	All fractions: 15-30%	Clay/silt: 5-12%	
		sand/gravel: 15-30%	
Trace	All fractions: 0-15%	Clay/silt: 0-5%	
		sand/gravel: 0-15%	

The terms "with" and "trace" generally apply only to gravel or fine particle fractions. Where cobbles/boulders are encountered in minor proportions (generally less than about 12%) the term "occasional" may be used. This term describes the sporadic distribution of the material within the confines of the investigation excavation only, and there may be considerable variation in proportion over a wider area which is difficult to factually characterise due to the relative size of the particles and the investigation methods.

Soil Composition

Plasticity		<u>Grain Siz</u>	e				
Descriptive	Descriptive Laboratory liquid limit range			Туре		Particle size (mm)	
Term	Silt	Clay	Gravel	Coarse	٦	9 - 63	
Non-plastic	Not applicable	Not applicable		Mediur	n (6.7 - 19	
materials				Fine	4	2.36 – 6.7	
Low	≤50	≤35	Sand	Coarse	(0.6 - 2.36	
plasticity				Mediur	n (0.21 - 0.6	
Medium	Not applicable	>35 and ≤50		Fine	(0.075 - 0.21	
plasticity							
High	>50	>50	Grading				
plasticity			Grading Term Particle size (n		Particle size (mm)		
			\M/@			od representation of all	

Note, Plasticity descriptions generally describe the plasticity behaviour of the whole of the fine grained soil, not individual fine grained fractions.

Grading	
Grading Term	Particle size (mm)
Well	A good representation of all
	particle sizes
Poorly	An excess or deficiency of
	particular sizes within the
	specified range
Uniformly	Essentially of one size
Gap	A deficiency of a particular
	size or size range within the
	total range

Note, AS1726-2017 provides terminology for additional attributes not listed here.

Soil Condition

<u>Moisture</u>

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

Applicability	Term	Tactile Assessment	Abbreviation code
Fine	Dry of plastic limit	Hard and friable or powdery	w <pl< td=""></pl<>
	Near plastic limit	Can be moulded	w=PL
	Wet of plastic limit	Water residue remains on hands when handling	w>PL
	Near liquid limit	"oozes" when agitated	W=LL
	Wet of liquid limit	"oozes"	w>LL
Coarse	Dry	Non-cohesive and free running	D
	Moist	Feels cool, darkened in colour, particles may stick together	Μ
	Wet	Feels cool, darkened in colour, particles may stick together, free water forms when handling	W

The abbreviation code NDF, meaning "not-assessable due to drilling fluid use" may also be used. Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

Consistency/Density/Compaction/Cementation/Extremely Weathered Material

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e. it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the materials undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials, the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered material origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based the overall material description.

Quantitative engineering performance of these materials may be determined by laboratory testing or estimated by correlated field tests (for example penetration or shear vane testing). In some cases, performance may be assessed by tactile or other subjective methods, in which case investigation logs will show the estimated value enclosed in round brackets, for example (VS).

Consistency Term	Tactile Assessment	Undrained Shear Strength (kPa)	Abbreviation Code
Very soft	Extrudes between fingers when squeezed	<12	VS
Soft	Mouldable with light finger pressure	>12 - ≤25	S
Firm	Mouldable with strong finger pressure	>25 - ≤50	F
Stiff	Cannot be moulded by fingers	>50 - ≤100	St
Very stiff	Indented by thumbnail	>100 - ≤200	VSt
Hard	Indented by thumbnail with difficulty	>200	Н
Friable	Easily crumbled or broken into small pieces by hand	-	Fr

Consistency (fine grained soils)

Relative Density (coarse grained soils)

Relative Density Term	Density Index	Abbreviation Code
Very loose	<15	VL
Loose	>15 - ≤35	L
Medium dense	>35 - ≤65	MD
Dense	>65 - ≤85	D
Very dense	>85	VD

Note, tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.

Soil Descriptions

Compaction	anthrono	aonically	modified soil)	
Compaction	lancinopoi	gerncany	mounieu sonj	

Compaction Term	Abbreviation Code	
Well compacted	WC	
Poorly compacted	PC	
Moderately compacted	MC	
Variably compacted	VC	

Cementation (natural and anthropogenic)

Cementation Term	Abbreviation Code	
Moderately cemented	MOD	
Weakly cemented	WEK	

Extremely Weathered Material

AS1726-2017 considers weathered material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. less than very low strength rock). These materials may be identified as "extremely weathered material" in reports and by the abbreviation code XWM on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

Soil Origin

Term	Description	Abbreviation Code
Residual	Derived from in-situ weathering of the underlying rock	RS
Extremely	Formed from in-situ weathering of geological formations. Has	XWM
weathered material	strength of less than 'very low' as per as1726 but retains the	
	structure or fabric of the parent rock.	
Alluvial	Deposited by streams and rivers	ALV
Estuarine	Deposited in coastal estuaries	EST
Marine	Deposited in a marine environment	MAR
Lacustrine	Deposited in freshwater lakes	LAC
Aeolian	Carried and deposited by wind	AEO
Colluvial	Soil and rock debris transported down slopes by gravity	COL
Slopewash	Thin layers of soil and rock debris gradually and slowly	SW
	deposited by gravity and possibly water	
Topsoil	Mantle of surface soil, often with high levels of organic material	TOP
Fill	Any material which has been moved by man	FILL
Littoral	Deposited on the lake or seashore	LIT
Unidentifiable	Not able to be identified	UID

Cobbles and Boulders

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

intentionally blank

Rock Strength

Rock strength is defined by the unconfined compressive strength, and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{s(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Unconfined Compressive Strength (MPa)	Point Load Index ¹ I _{s(50)} MPa	Abbreviation Code
Very low	0.6 - 2	0.03 - 0.1	VL
Low	2 - 6	0.1 - 0.3	L
Medium	6 - 20	0.3 - 1.0	М
High	20 - 60	1-3	Н
Very high	60 - 200	3 - 10	VH
Extremely high	>200	>10	EH

¹ Rock strength classification is based on UCS. The UCS to $I_{s(50)}$ ratio varies significantly for different rock types and specific ratios may be required for each site. The point load Index ranges shown above are as suggested in AS1726 and should not be relied upon without supporting evidence.

The following abbreviation codes are used for soil layers or seams of material "within rock" but for which the equivalent UCS strength is less than 0.6 MPa.

Scenario	Abbreviation Code
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The properties of the material encountered over this interval are described in the "Description of Strata" and soil properties columns.	SOIL
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The prominence of the material is such that it can be considered to be a seam (as defined in Table 22 of AS1726-2017) and the properties of the material are described in the defect column.	SEAM

Degree of Weathering

The degree of weathering of rock is classified as follows:

Weathering Term	Description	Abbreviation Code
Residual Soil ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	RS
Extremely weathered ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	XW
Highly weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.	HW
Moderately weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MW
Slightly weathered	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	SW
Fresh	No signs of decomposition or staining.	FR
Note: If HW ar	nd MW cannot be differentiated use DW (see below)	
Distinctly weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	DW

¹ The parent rock type, of which the residual/extremely weathered material is a derivative, will be stated in the description (where discernible).

Degree of Alteration

The degree of alteration of the rock material (physical or chemical changes caused by hot gasses or liquids at depth) is classified as follows:

Term	Description	Abbreviation Code
Extremely altered	Material is altered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	XA
Highly altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is changed by alteration. Some primary minerals are altered to clay minerals. Porosity may be increased by leaching or may be decreased due to precipitation of secondary materials in pores.	HA
Moderately altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MA
Slightly altered	Rock is slightly discoloured but shows little or no change of strength from fresh rock	SA
Note: If HA and	d MA cannot be differentiated use DA (see below)	
Distinctly altered	Rock strength usually changed by alteration. The rock may be highly discoloured, usually by staining or bleaching. Porosity may be increased by leaching or may be decreased due to precipitation of secondary minerals in pores.	DA

Degree of Fracturing

The following descriptive classification apply to the spacing of natural occurring fractures in the rock mass. It includes bedding plane partings, joints and other defects, but excludes drilling breaks. These terms are generally not required on investigation logs where fracture spacing is presented as a histogram, and where used are presented in an unabbreviated format.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD %= cumulative length of 'sound' core sections > 100 mm long total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e., drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

These terms may be used to describe the spacing of bedding partings in sedimentary rocks. Where used, these terms are generally presented in an unabbreviated format

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly	> 2 m
bedded	

Rock Descriptions

Defect Descriptions

Defect Type

Term	Abbreviation Code
Bedding plane	В
Infilled seam	IS
Cleavage	CV
Crushed zone	CZ
Decomposed seam	DS
Fault	F
Joint	JT
Lamination	LAM
Parting	Ρ
Shear zone	SZ
Vein	VN
Drilling/handling break	DB, HB
Fracture	FC

Rock Defect Orientation

Term	Abbreviation Code
Horizontal	Н
Vertical	V
Sub-horizontal	SH
Sub-vertical	SV

Rock Defect Coating

Term	Abbreviation Code
Clean	CN
Coating	СТ
Healed	HE
Infilled	INF
Stained	SN
Tight	TI
Veneer	VNR

Rock Defect Infill

Term	Abbreviation Code
Calcite	CA
Carbonaceous	CBS
Clay	CLAY
Iron oxide	FE
Manganese	MN

intentionally blank

Rock Defect Shape/Planarity

Term	Abbreviation Code
Curved	CU
Irregular	IR
Planar	PR
Stepped	ST
Undulating	UN

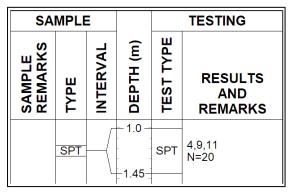
Rock Defect Roughness

Term	Abbreviation Code
Polished	PO
Rough	RF
Slickensided	SL
Smooth	SM
Very rough	VR

Defect Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

intentionally blank



Terminology Symbols Abbreviations

Sampling and Testing

A record of samples retained, and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

<u>Sampling</u>

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

Sample Type	Code
Auger sample	A
Bulk sample	В
Core sample	С
Disturbed sample	D
Sample from SPT test	SPT
Environmental sample	ES
Gas sample	G
Undisturbed tube sample	U
Water sample	W
Piston sample	Ρ
Core sample for unconfined	UCS
compressive strength testing	
Material Sample	MT

¹ – numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

Test Type	Code
Pocket penetrometer (kPa)	PP
Photo ionisation detector (ppm)	PID
Standard Penetration Test	SPT
x/y = x blows for y mm	
penetration	
HB = hammer bouncing	
HW = fell under weight of	
hammer	
Shear vane (kPa)	
Unconfined compressive	UCS
strength, (MPa)	

Field and laboratory testing (continued)

Test Type	Code
Point load test, (MPa),	PLT(_)
axial (A) , diametric (D) ,	
irregular (I)	
Dynamic cone penetrometer,	DCP/150
followed by blow count	
penetration increment in mm	
(cone tip, generally in	
accordance with AS1289.6.3.2)	
Perth sand penetrometer,	PSP/150
followed by blow count	
penetration increment in mm	
(flat tip, generally in accordance	
with AS1289.6.3.3)	

Groundwater Observations

\triangleright	seepage/inflow
$\overline{\nabla}$	standing or observed water level
NFGWO	no free groundwater observed
OBS	observations obscured by drilling
	fluids

Drilling or Excavation Methods/Tools

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left-hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.

Method	Abbreviation
	Code
Toothed bucket	TB1
Mud/blade bucket	MB ¹
Ripping tyne/ripper	R
Rock breaker/hydraulic	RB
hammer	
Hand auger	HA ¹
NMLC series coring	NMLC
HMLC series coring	HMLC
NQ coring	NQ3
HQ coring	HQ3
PQ coring	PQ3
Push tube	PT ¹
Rock roller	RR ¹
Solid flight auger. Suffixes:	AD ¹
/T = tungsten carbide tip,	
/V = v-shaped tip	
Sonic drilling	SON ¹
Vibrocore	$^{\circ}$ VC ¹
Wash bore (unspecified bit	WB ¹
type)	
Existing exposure	X
Hand tools (unspecified)	HAND
Predrilled	PD
Diatube	
Hollow flight auger	HSA ¹
Vacuum excavation	VE

¹ – numeric suffixes indicate tool diameter/width in mm

Appendix C

Historical Aerial Photographs

Appendix C Historical Aerial Photos Lot 9 DP1193430 Hebden Road, Muswellbrook

Figure C1: 1958 aerial photograph, site in red

Figure C2: 1974 aerial photograph, site in red

Figure C3: 1989 aerial photograph, site in red

Figure C4: 1993 aerial photograph, site in red

Page 2 of 4

Figure C5: 1999 aerial photograph, site in red

Figure C6: 2007 aerial photograph, site in red

Figure C7: 2013 aerial photograph, site in red

Figure C8: 2023 aerial photograph, site in red

Douglas Partners Pty Ltd

Appendix D

Historical Title Deeds

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

Re: - Hebden Road, Muswellbrook

Description: - Lot 9 D.P. 250890

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
19.09.1924 (1924 to 1928)	Ernest Thompson (Farmer)	Volume 3640 Folio 169
27.06.1928 (1928 to 1939)	Chard Hilston Neve (Farmer)	Volume 3640 Folio 169
06.01.1939 (1939 to 1946)	Enid Raby Marshall (Married Woman)	Volume 3640 Folio 169
23.08.1946 (1946 to 1950)	John Thomas Knight (Butcher)	Volume 3640 Folio 169
19.01.1950 (1950 to 1950)	Ian Mills Bolte (Farmer)	Volume 3640 Folio 169
02.05.1950 (1950 to 1953)	James Craig Tanner (Grazier)	Volume 3640 Folio 169 Now Volume 6382 Folio 138
09.10.1953 (1953 to 1959)	J.T. & P. Investments Pty Limited	Volume 6382 Folio 138
05.03.1959 (1959 to 1960)	Thomas Arthur Hall (Engineer)	Volume 6382 Folio 138
30.06.1960 (1960 to 1966)	J.T. & P. Investments Pty Limited	Volume 6382 Folio 138
06.04.1966 (1966 to 1976)	The Electricity Commission of New South Wales	Volume 6382 Folio 138
30.01.1976	Declared Crown Land	Volume 6382 Folio 138 Now Crown Land
30th January 1976	Added to Crown Reserve No.` 87994 for Public Recreation	Gazette
23 rd November 1990	Lake Liddel Recreation Area (Reserve 87894) Reserve Trust Muswellbrook Shire Council – Trust Manager	
	# The State of New South Wales	9/250890

Denotes current registered proprietor

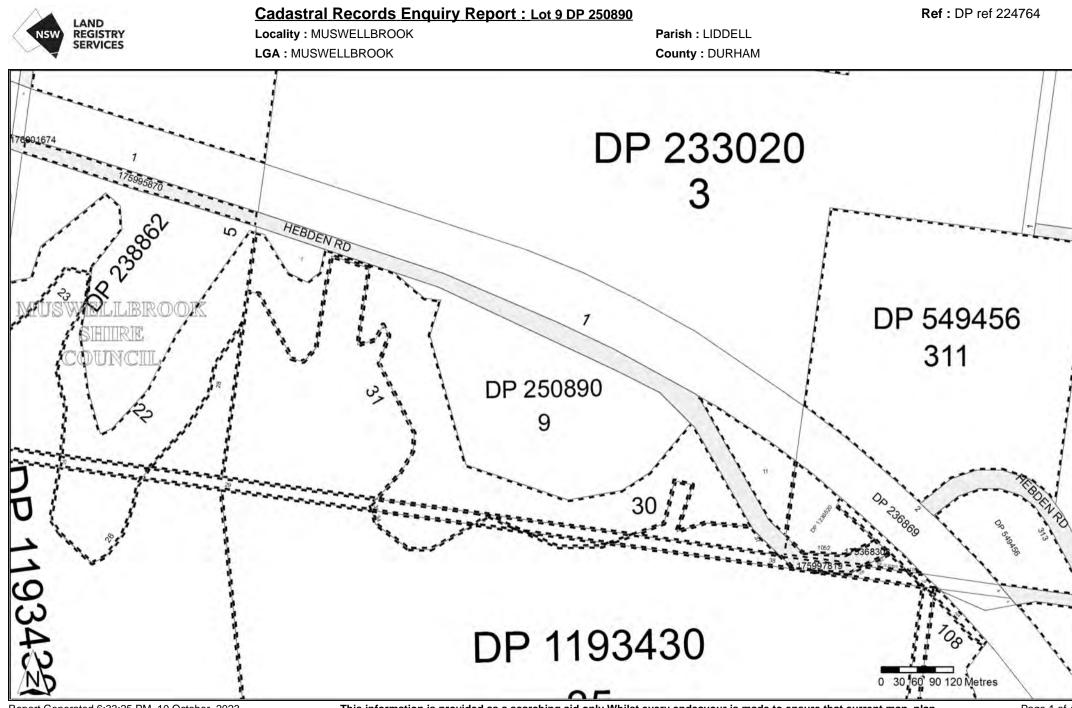
Leases: -

• 08.05.1926 to Thomas Reuben Payne (Farmer) – defaulted 28th June 1928.

Easements: -

• 19.12.1975 Easement for Electricity Supply.

Yours Sincerely Mark Groll 10 July 2023



Cadastral Records Enquiry

Copyright © Office of the Registrar-General 2023

Retrieved: 10/10/2023 18:33:02

Report Generated 6:33:25 PM, 10 October, 2023 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps Page 1 of 4

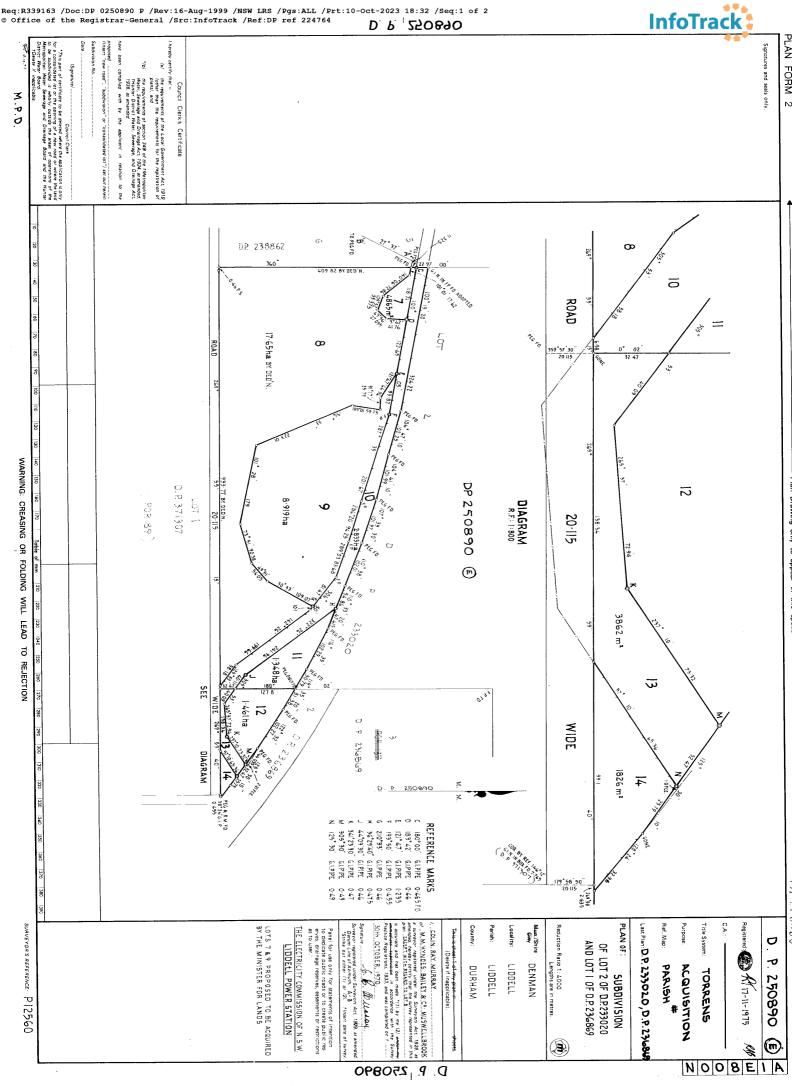
SERVICES	Locality : MUSWELLBROOK LGA : MUSWELLBROOK		Parish : LIDDELL
*			County : DURHAM
224.000	Status	Surv/Comp	Purpose
231880 (s): 3			
P265436	REGISTERED	SURVEY	EASEMENT
250890			
(s): 11 I DP265436	REGISTERED	SURVEY	EASEMENT
532671	REGISTERED	SURVET	LASEMENT
(s): 3			
🦳 DP265436	REGISTERED	SURVEY	EASEMENT
549456 (s): 311, 313			
DP265436	REGISTERED	SURVEY	EASEMENT
1193296			
(s): 26			
Q DP238862	HISTORICAL	SURVEY	SUBDIVISION
(s): 24, 25, 29, 32, 33,	38. 39		
🖳 DP774680	HISTORICAL	COMPILATION	RESUMPTION OR ACQUISITION
(s): 31, 37			
DP265436	REGISTERED	SURVEY	EASEMENT
(s): 26, 27, 34, 35, 36 DP255215	HISTORICAL	SURVEY	SUBDIVISION
(s): 30, 31, 37			
DP250890	HISTORICAL	SURVEY	RESUMPTION OR ACQUISITION
(s): 22, 23, 28			
(s): 22	HISTORICAL	SURVEY	SUBDIVISION
(S). 22	. 09-05-20)14	Folio : 1375
	OR COUNCIL PURPOSES		
	GENERATOR ASSETS (AUTHO	DRISED TRANSACTIONS) A	ACT 2012 - LOTS 10, 18 AND 21-22 DP11934
(s): 20 PA83221 - LO	T 11 DP815320, LOT 19 DP1193	296 AND LOTS 10 AND 20-	21 DP1193430
(s): 25			
MSW GAZ.)14	Folio : 3077
	RESERVED CROWN LAND 0. 87894 - LOT 25 DP1193430		
(s): 26	. 07034 - LOT 23 DI 1133430		
🎽 🖉 NSW GAZ.)14	Folio : 3077
	RESERVED CROWN LAND		
LOT 26 DP119	33430		
(s): 32 🐙 NSW GAZ.	. 12-09-20)14	Folio : 3077
ADDITION TO	RESERVED CROWN LAND		
	0. 87894 - LOT 32 DP1193430		
(s): 30 MSW GAZ.	. 12-09-20	11/	Folio : 3077
	RESERVED CROWN LAND		
RESERVE NC). 87894 - LOT 30 DP1193430		
(s): 34, 36 MSW GAZ.		14	Folio : 3077
	. 12-09-20 RESERVED CROWN LAND	J14	F0110 : 3077
	0. 87894 - LOT 34 DP1193430		
(s): <u>20</u> , 25, 26, 30, 32,	34, 36		
		014	Folio : 3077
DECLARED C LOTS 2, 6-7, 1	1, 13, 15, 19, 20, 22, 25-26, 30, 3	32, 34, 36 DP1193430 AND (31, 33, 34, 38-40 DP241179
MSW GAZ.			Folio : 3077
.	ROWN LAND		

 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

		Cadastral Rec	ords Enqu	uiry Report : L	ot 9 DP 250890	Ref : DP ref 224764
NSW	REGISTRY	Locality : MUSWEL	LBROOK		Parish : LIDDELL	
V	SERVICES	LGA : MUSWELLB	ROOK		County : DURHAM	
		Status		Surv/Comp	Purpose	
DP1218648 Lot(s): 102	-					
	DP774680	HISTORICAL	-	COMPILATION	RESUMPT	ON OR ACQUISITION
.	DP1193430	HISTORICAL		SURVEY	RESUMPT	ION OR ACQUISITION
Lot(s): 103	104, 107, 108					
	DP255215	HISTORICAL	-	SURVEY	SUBDIVISI	ON
Lot(s): 101						
<u>e</u> 1	DP236869	HISTORICAL	-	SURVEY	RESUMPT	ION OR ACQUISITION
DP1230520 Lot(s): 105	-					
	DP236869	HISTORICAL	-	SURVEY	RESUMPT	ION OR ACQUISITION
🦳 I	DP1218648	HISTORICAL	-	SURVEY	RESUMPT	ON OR ACQUISITION
Road Polygon Id((s): 175995870					
	NSW GAZ. DEDICATED PL _OT 4 DP23886		18-08-2017		Folio : 4490	
	(s): 176001674					
	NSW GAZ. DEDICATED PL LOT 26 DP1193		18-08-2017		Folio : 4490	
Polygon Id	s): 175997819					
7	Ó NSW GAZ. DEDICATED PL LOT 39 DP1193		18-08-2017		Folio : 4490	

Cadastral Records Enquiry Report : Lot 9 DP 250890


Locality : MUSWELLBROOK LGA : MUSWELLBROOK

Parish : LIDDELL County : DURHAM

•		••••••••••••••••••••••••••••••••••••••
Plan	Surv/Comp	Purpose
DP231880	SURVEY	RESUMPTION OR ACQUISITION
DP233020	SURVEY	RESUMPTION OR ACQUISITION
DP236869	SURVEY	RESUMPTION OR ACQUISITION
DP238862	SURVEY	SUBDIVISION
DP250890	SURVEY	RESUMPTION OR ACQUISITION
DP255215	SURVEY	SUBDIVISION
DP531245	SURVEY	RESUMPTION OR ACQUISITION
DP532671	SURVEY	RESUMPTION OR ACQUISITION
DP532672	SURVEY	RESUMPTION OR ACQUISITION
DP549456	SURVEY	SUBDIVISION
DP752470	COMPILATION	CROWN ADMIN NO.
DP1128223	COMPILATION	CROWN LAND CONVERSION
DP1128333	COMPILATION	DEPARTMENTAL
DP1193430	SURVEY	RESUMPTION OR ACQUISITION
DP1218648	SURVEY	RESUMPTION OR ACQUISITION
DP1230520	SURVEY	SUBDIVISION


 Caution:
 This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

 ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

SEARCH DATE

_____ 10/10/2023 6:32PM

FOLIO: 9/250890

First Title(s): THIS FOLIO Prior Title(s): CROWN LAND

LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
29/4/2008	CA128561	CONVERSION ACTION	FOLIO CREATED
			CT NOT ISSUED

*** END OF SEARCH ***

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 9/250890

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
10/10/2023	6:32 PM	-	-

LAND

LOT 9 IN DEPOSITED PLAN 250890 AT MULWELLBROOK LOCAL GOVERNMENT AREA MUSWELLBROOK PARISH OF LIDDELL COUNTY OF DURHAM TITLE DIAGRAM DP250890

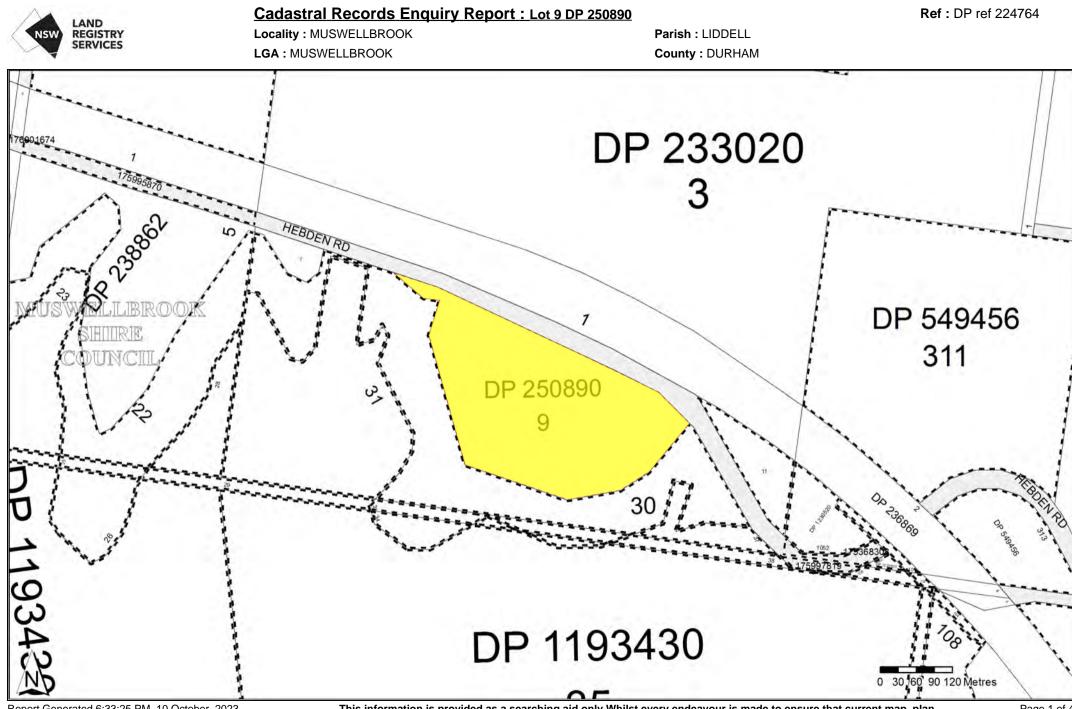
FIRST SCHEDULE

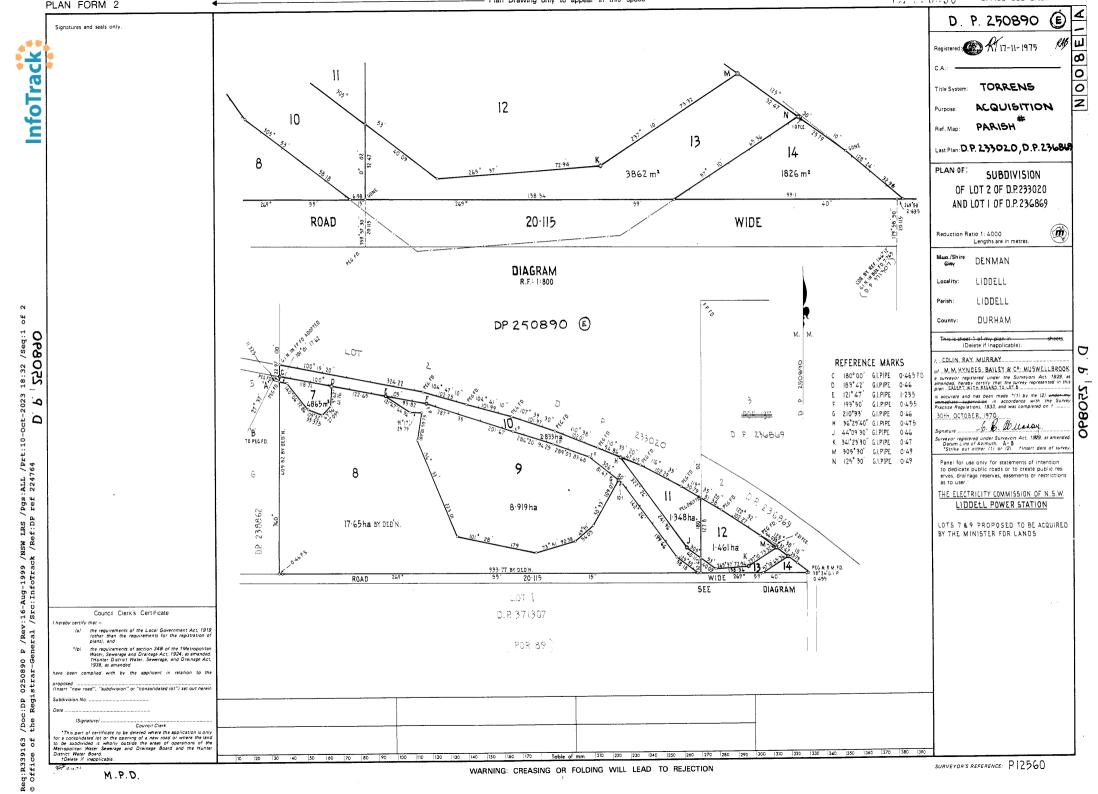
THE STATE OF NEW SOUTH WALES

(CA128561)

SECOND SCHEDULE (3 NOTIFICATIONS)

- * 1 THE LAND IS A RESERVE WITHIN THE MEANING OF PART 5 OF THE CROWN LANDS ACT 1989 AND THERE ARE RESTRICTIONS ON TRANSFER AND OTHER DEALINGS IN THE LAND UNDER THAT ACT, WHICH MAY REQUIRE CONSENT OF THE MINISTER.
- * 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- * 3 NOTIFICATION IN GOVERNMENT GAZETTE DATED 19.12.1975 FOL. 5482 -EASEMENT FOR ELECTRICITY SUPPLY AFFECTING THE PART OF THE LAND ABOVE DESCRIBED AS MORE FULLY SET OUT THEREIN


NOTATIONS


UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Report Generated 6:33:25 PM, 10 October, 2023 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps Page 1 of 4

N

NEW SOUTH WALES GOVERNMENT GAZETTE No. 15 [30 JANUARY, 1976]

452

(6377)

Sydney, 30th January, 1976.

DECLARATION UNDER SECTION 25A OF THE CROWN LANDS CONSOLIDATION ACT, 1913, IN RESPECT OF LAND

IN pursuance of the provisions of section 25A of the Crown Lands Consolidation Act, 1913, I declare that the lands particularized hereunder may be dealt with as if they had been acquired under the Closer Settlement Acts or as Crown land within the meaning of the Crown Lands Consolidation Act, 1913.

C. M. FISHER, Minister for Lands.

SCHEDULE

Land vested in the Electricity Commission of N.S.W.

Land District-Singleton; Shire-Denman

Parish of Liddell, County of Durham, 9.405 hectares, being lots 7 and 9, D.P. 250890, and being also part of the lands in Certificate of Title, volume 6382, folio 138. Pks 75-1181.

Land vested in The Council of the Shire of Wakool Land District-Deniliquin; Shire-Wakool

Parish and Town Barham, County Wakool, 3.637 hectares, being portions 50, 51, 52, 53 and 54 and being the land contained in C.T., vol. 6138, fol. 213, C.G., vol. 3601, fol. 12, C.G., vol. 3420, fol. 90, and C.G., vol. 3291, fol. 64. Pks 73-650.

Land vested in the Minister for Lands

Land District-Inverell; Shire-Macintyre

Parish Clive, County Gough, 1973 square metres, being portion 265. Pks 75-1279.

(6382) Sydney, 30th January, 1976. LORD HOWE ISLAND BOARD RESIGNATION

IT is hereby notified that in pursuance of the provisions of paragraph (d) of section 5 of the Lord Howe Island Act, 1953, the Governor-in-Council has approved of the acceptance of the resignation tendered by Mr John Brettell Holliday, as a member and chairman of the Lord Howe Island Board, with the last day of service 12th August, 1975. L.H. 404.

C. M. FISHER, Minister for Lands.

(6383)

Sydney, 30th January, 1976.

DECLARATION OF A PUBLIC BODY AS A PUBLIC AUTHORITY FOR THE PURPOSES OF SECTION 25A, CROWN LANDS CONSOLIDATION ACT, 1913

IN pursuance of the provisions of section 25A of the Crown Lands Consolidation Act, 1913, I, by this my Order, do hereby declare The Council of the Shire of Wakool to be a public authority for the purposes of the aforesaid section 25A. Pks 73-650.

C. M. FISHER, Minister for Lands.

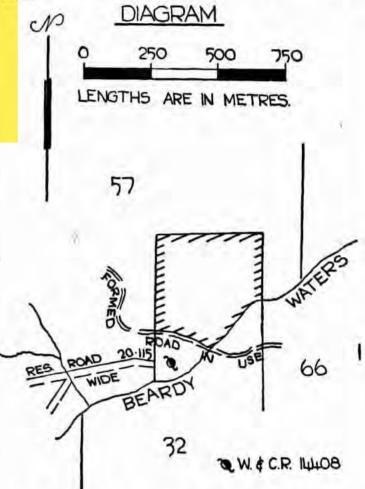
(6376) Sydney, 30th January, 1976. RESERVES FROM SALE

IN pursuance of the provisions of section 28, Crown Lands Consolidation Act, 1913, I declare that the Crown lands hereunder described shall be reserved from sale for the public purposes hereinafter specified and are thereby reserved accordingly.

C. M. FISHER, Minister for Lands.

FOR BOY SCOUTS

Land District—Picton; City—Campbelltown No. 89719, Parish Wedderburn, County Cumberland, area 6.27 hectares, being portion 63. Pks 75-429.


TOD DUDITO DECORTATION

Land District-Picton; City-Campbelltown

No. 89720, Parish Wedderburn, County Cumberland, area 41.17 hectares, being portions 12 and 46. Pks 75-429.

FOR PUBLIC RECREATION AND ACCESS

Land District—Glen Innes; Shire—Severn No. 89721, Parish Macintyre, County Gough, about 14 hectares, shown by hatched edging on diagram hereunder. Ten. 75-5446.

FOR PUBLIC RECREATION AND PUBLIC HALL

Land District-Inverell; Shire-Macintyre

No. 89717, Parish Clive, County Gough, 1973 square metres, being portion 265. Pks 75-1279.

Board of Surveyors, Department of Lands, Sydney, 30th January, 1976.

THE undermentioned has been removed from the Register of Surveyors under the provisions of the Surveyors Act, 1929, for the reason shown.

Nugent, Kerry Frank, 4 Ginahgulla Street, Mt Gravatt East, Brisbane—at own request.

(6224) L. N. FLETCHER, President. J. A. COLQUHOUN, Acting Registrar.

Board of Surveyors, Department of Lands, Sydney, 30th January, 1976.

THE undermentioned has been removed from the Register of Surveyors under the provisions of the Surveyors Act, 1929, for the reason shown.

McCouat,	John Angus,	3 Birkley Road, Manly-	-deceased.
		L. N. FLETCHER,	President.
(6190)	J. A.	COLOUHOUN, Acting	Registrar.

FOR PUBLIC RECREATION

Land District-Condobolin; Shire-Lachlan

No. 89716 from sale, Parish Murda, County Cunningham, about 6 hectares, being the part of Mount Tilga Tilga Trig. Reserve 8652, lying west of a line rectangular distant through a point on the southern boundary of the reserve 200 metres easterly of the southwestern corner of that reserve. (The included part of Trig. Reserve 8642, is hereby revoked.) Pks 75-1278.

Land District-Moruya; Shire-Eurobodalla

No. 89718, Parish Bateman, County St Vincent, area 33.19 hectares, being lot 1, D.P. 536738, and lot 221, D.P. 578305. Pks 75-797. the concernent, neurs Actional

(6394) Board of Surveyors, Department of Lands, Sydney, 30th January, 1976.

THE undermentioned has been registered as a Surveyor under the provisions of the Surveyors Act, 1929, from the date shown.

Franklin, Ross Charles, c.o. Jones Flint & Pike, Consulting Planners & Surveyors, P.O. Box 1074, Surfers Paradise, Queensland 4217.

L. N. FLETCHER, President. J. A. COLQUHOUN, Acting Registrar.

National Library of Australia

30 JANUARY, 1976] NEW SOUTH WALES GOVERNMENT GAZETTE No. 15

Parish Tyagong, County Monteagle, Land District Grenfell, Shire Weddin

Widening of part road from Forbes to Young, D.P. 251219, R. 35382-1603. (Council's reference: R. 8/2-7/75.) Rds 75-1811.

Land resumed for road; Lot 1.

Title affected and area resumed: C.G. 5229-80 (3 540 square metres).

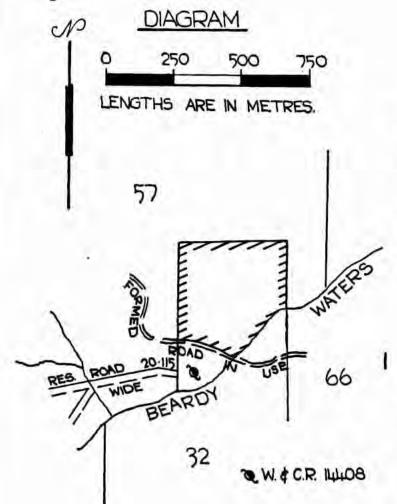
Parish Stewart, County Macquarie, Land District Taree, Shire Manning

Widening of part of road from Hannam Vale to Johns River, D.P. 251250, R. 35436-1603R. (Council's reference: R. 2/11.) Rds 75-1977.

Lands resumed for road: Lots 1 to 7.

Titles affected and areas resumed: C.T. 4747-248 (891 square metres); C.T. 5186-106 (445 square metres); C.T. 6845-39 (1 296 square metres); C.G. 7633-221 (1 854 square metres); C.T. 6862-206 (986 square metres); C.T. 6862-41 (8 square metres).

Note: Dedication is limited to the surface and a depth of 20 metres below the surface.

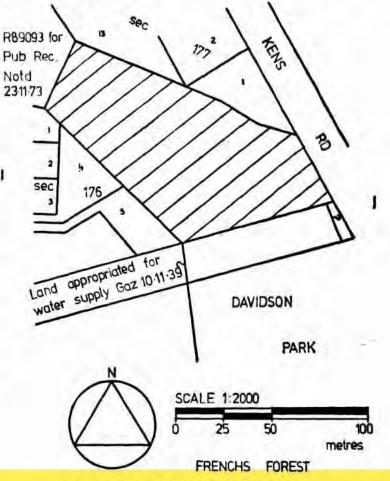

(6379) Sydney, 30th January, 1976. WITHDRAWAL OF LAND FROM RESERVE UNDER THE CONTROL OF PASTURES PROTECTION BOARD

IN pursuance of the provisions of section 42 (2), Pastures Protection Act, 1934, the land specified hereunder is hereby withdrawn from such reserve for the purpose stated.

C. M. FISHER, Minister for Lands.

Land Board District—Armidale; Pastures Protection District— Glen Innes

Parish Macintyre, County Gough, Reserve No. 14408 for Water Supply and Camping, notified 5th September, 1891. Part withdrawn—about 14 hectares shown by hatched edging on diagram hereunder. Ten. 75-5446.



FOR PUBLIC RECREATION

Land District-Metropolitan; Shire-Warringah

Parish Manly Cove, County Cumberland, area about 3 hectares, being the area shown by cross-hatching on plan catalogued Ms 22786 Sydney. (R. 87733 for Public Recreation, notified 24th July, 1970). Pks 6016-S.

Parish Manly Cove, County Cumberland, area about 8 000 square metres, being the area shown by hatching on diagram below. (R. 89093 for Public Recreation, notified 23rd November, 1973). Pks 6016-S.

Land District-Singleton; Shire-Denman

Parish Liddell, County Durham, area 9.405 hectares, being lots 7 and 9, D.P. 250890. (R. 87894 for Public Recreation, notified 21st August, 1970.) Pks 75-1181.

(6381) Sydney, 30th January, 1976. PROPOSED REVOCATION OF DEDICATION

AS I am of the opinion that the purpose of the dedication of the area described hereunder has failed, notice is hereby given, in accordance with the provisions of section 25 of the Crown Lands Consolidation Act, 1913, that it is intended to revoke such dedication with a view to dealing with the land in accordance with the provisions of that Act.

C. M. FISHER, Minister for Lands.

Land District—Armidale; Shire—Dumaresq

Parish Metz, County Sandon, Village of Hillgrove, about 3 642 square metres, the balance, being part allotment 1, section 22, dedicated for addition to public school site at Hillgrove on 24th December, 1897. Ten. 75-1149.

(6378) Sydney, 30th January, 1976. WITHDRAWAL OF RESERVE FROM CONTROL OF PASTURES PROTECTION BOARD

IN pursuance of the provisions of section 42 (1), Pastures

Withdrawn for purposes of public recreation and access. (Placed under control, Gazette, 7th November, 1930.)

(6380) Sydney, 30th January, 1976. ADDITION TO RESERVES FROM SALE

IN pursuance of the provisions of section 28, Crown Lands Consolidation Act, 1913, I declare that the Crown lands hereunder described shall be added to the lands within the reserves specified in parentheses hereunder and are thereby added accordingly.

C. M. FISHER, Minister for Lands.

Protection Act, 1934, the reserve specified hereunder is hereby withdrawn from the control of the Pastures Protection Board for the Pastures Protection District.

C. M. FISHER, Minister for Lands.

Land Board District—Grafton; Pastures Protection District— Tweed-Lismore

Parish Bungawalbin, County Richmond, Reserve No. 73698 for Travelling Stock and Camping. Part withdrawn—the whole (part portion 213).

(Placed under control, Gazette, 6th April, 1951.) Pks 75-1093.

National Library of Australia

ASSIGNMENT OF CORPORATE NAMES TO RESERVE TRUSTS

Pursuant to Clause 4(3) of Schedule 8 of the Crown Lands Act, 1989 the corporate name in Column C is assigned to the reserve trust constituted for the reserve or dedication specified opposite thereto in Columns A and 8.

GARRY WEST, M.P., MINISTER FOR TOURISM, LANDS AND FORESTS

DUBBO LANDS OFFICE

PART 1. RESERVES

COLUMN A	COLUMN B	COLUMN C	COLUMN D
NUMBER		CORPORATE NAME	TRUST MANAGER
11	COOLAH	QUEENSBOROUGH PARK WEST (R11) RESERVE TRUST	COOLAH SHIRE COUNCIL
1592	MENDOORAN	BRAMBIL PARK (R1592) RESERVE TRUST	COOLAH SHIRE COUNCIL
1995	GIRILAMBONE	GIRILAMBONE RECREATION (R1995) RESERVE TRUST	BOGAN SHIRE COUNCIL
2100	NEVERTIRE	NEVERTIRE PARK (R2100) RESERVE TRUST	HARREN SHIRE COUNCIL
5890	00880	DUBBO RIVERBANK (R5890) RESERVE TRUST	DUBBO CITY COUNCIL
16121	MARREN	VICTORIA OVAL (R16121) RESERVE TRUST	WARREN SHIRE COUNCIL
19729	EUCHAREENA	EUCHAREENA RECREATION (R19729) RESERVE TRUST	WELLINGTON SHIRE COUNCIL
20772	HOLLAR	HARRY HARVEY MEMORIAL PARK (R20772) RESERVE TRUST	MUDGEE SHIRE COUNCIL
24311	00880	DUBBO GAOL (R24311) RESERVE TRUST	DUBBO CITY COUNCIL
24511	COONWIELE	WARRENA HEIR RECREATION (R24511) RESERVE TRUST	COONWHELE SHIRE COUNCIL
34976	COLLARENEBRI	COLLARENEBRI CARAVAN PARK (R34976) RESERVE TRUST	WALGETT SHIRE COUNCIL
36399	BARADINE	BARADINE SPORTS OVAL (R36399) RESERVE TRUST	COONABARABRAN SHIRE COUNCIL
40891	MUDGEE	VICTORIA PARK (R40891) RESERVE TRUST	MUDGEE SHIRE COUNCIL
42238	GEURIE	TOM CULKIN OVAL (R42238) RESERVE TRUST	MELLINGTON SHIRE COUNCIL
42933	DRIPSTONE	DRIPSTONE RECREATION (R42933) RESERVE TRUST	MELLINGTON SHIRE COUNCIL
45013	QUANBONE	QUAMBONE RACECOURSE (R45013) RESERVE TRUST	COONNIBLE SHIRE COUNCIL
46099	00800	DUBBO RECREATION (R46099) RESERVE TRUST	DUBBO CITY COUNCIL
45646	COOMABARABRAN	COOMABARABRAM RACECOURSE (R46646) RESERVE TRUST	COOMABARABRAN SHIRE COUNCIL
46722	DUNEDOD	LIGHS CARAVAN PARK (R46722) RESERVE TRUST	COOLAH SHIRE COUNCIL

NEW SOUTH WALES GOVERNMENT GAZETTE No. 152

National Library of Australia

NUMBER	LOCATION	CORPORATE NAME	TRUST MANAGER
86605	NELSON BAY	NELSON BAY RECREATION (R86605) RESERVE TRUST	PORT STEPHENS SHIRE COUNCIL
86615	DENMAN	DENMAN RECREATION (R86615) RESERVE TRUST	MUSHELLBROOK SHIRE COUNCIL
86627	UMINA	UMINA PARKING (R86627) RESERVE TRUST	GOSFORD CITY COUNCIL
86761	FINGAL BAY	FINGAL BAY RECREATION AND PARKING (R86761) RESERVE TRUST	PORT STEPHENS SHIRE COUNCIL
86769	TOUKLEY	TOUKLEY RECREATION (R86769) RESERVE TRUST	WYONG SHIRE COUNCIL
86839	HILLSBOROUGH	HILLSBOROUGH SHONGROUND (R86839) RESERVE TRUST	LAKE MACQUARIE CITY COUNCIL
86909	PEATS RIDGE	PEATS RIDGE RECREATION (R86909) RESERVE TRUST	GOSFORD CITY COUNCIL
87474	HAHKS NEST	HAHKS NEST GOLF COURSE (R87474) RESERVE TRUST	GREAT LAKES SHIRE COUNCIL
87512	KURRI KURRI	KURRI KURRI PRE-SCHOOL	KURRI KURRI & DISTRICT
		(R87512) RESERVE TRUST	PRE-SCHOOL KINDERGARTEN INC
87633	KURRI KURRI	KURRI KURRI GIRL GUIDES (R87633) RESERVE TRUST	GIRL GUIDES ASSOCIATION, NSH
87813	FASSIFERN	FASSIFERN SCOUTS (R87813) RESERVE TRUST	THE SCOUT ASSOCIATION OF AUSTRALIA, NSH BRANCH
87815	KAHIBAH	KAHIBAH GIRL GUIDES (R87815) RESERVE TRUST	GIRL GUIDES ASSOCIATION, NSW
87817	KAHIBAH	KAHIBAH GIRL GUIDES (R87817) RESERVE TRUST	GIRL GUIDES ASSOCIATION, NS
87982	HOLLOMBI	WOLLONBI BUSH FIRE BRIGADE (R87882) RESERVE TRUST	CESSNOCK CITY COUNCIL
87894	LAKE LIDDELL	LAKE LIDDELL RECREATION AREA (R87894) RESERVE TRUST	MUSHELLBROOK SHIRE COUNCIL
98027	GOSFORD	GOSFORD CHARITABLE ORGANISATION (R88027) RESERVE TRUST	AID RETARDED PERSONS (NSH)
85088	GOSFORD	GOSFORD CHARITABLE ORGANISATION (R88028) RESERVE TRUST	ST VINCENT DE PAUL SOCIETY
88029	GOSFORD	GOSFORD SCOUTS (R88029) RESERVE TRUST	THE SCOUT ASSOCIATION OF AUSTRALIA, NSH BRANCH
88293	WILLIAMTOWN	WILLIAMTOWN SCOUTS (R88293) RESERVE TRUST	THE SCOUT ASSOCIATION OF AUSTRALIA, NSH BRANCH
88364	NOY NOY	NOV NOV SCOUTS (R88364) RESERVE TRUST	THE SCOUT ASSOCIATION OF AUSTRALIA, NON BRANCH
88365	UMENA	UMINA SCOUTS (ROB365) RESERVE TRUST	THE SCOUT ASSOCIATION OF AUSTRALIA, NON BRANCH
99417	SINGLETON	SINGLETON RECREATION (R88417) RESERVE TRUST	
88500	GARDEN SUBURB		ABORIGINAL CHILDRENS ADVANCEMENT SOCIETY LTD

National Library of Australia

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 10/10/2023 6:32PM

FOLIO: 9/250890

First Title(s): THIS FOLIO Prior Title(s): CROWN LAND

LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
29/4/2008	CA128561	CONVERSION ACTION	FOLIO CREATED
			CT NOT ISSUED

*** END OF SEARCH ***

REGISTRY Title Search

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 9/250890

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
10/10/2023	6:32 PM	-	-

LAND

LOT 9 IN DEPOSITED PLAN 250890 AT MULWELLBROOK LOCAL GOVERNMENT AREA MUSWELLBROOK PARISH OF LIDDELL COUNTY OF DURHAM TITLE DIAGRAM DP250890

FIRST SCHEDULE

THE STATE OF NEW SOUTH WALES

(CA128561)

SECOND SCHEDULE (3 NOTIFICATIONS)

- * 1 THE LAND IS A RESERVE WITHIN THE MEANING OF PART 5 OF THE CROWN LANDS ACT 1989 AND THERE ARE RESTRICTIONS ON TRANSFER AND OTHER DEALINGS IN THE LAND UNDER THAT ACT, WHICH MAY REQUIRE CONSENT OF THE MINISTER.
- * 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- * 3 NOTIFICATION IN GOVERNMENT GAZETTE DATED 19.12.1975 FOL. 5482 -EASEMENT FOR ELECTRICITY SUPPLY AFFECTING THE PART OF THE LAND ABOVE DESCRIBED AS MORE FULLY SET OUT THEREIN

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 968(2) of the Real Property Act 1900.

Appendix E

Site Photographs

Appendix E Site Photographs Lot 9 DP1193430 Hebden Road, Muswellbrook

Photograph E1: Looking south-west from the central portion of the site

Photograph E2: Looking west from the central portion of the site towards mature trees to the west of the site

Photograph E3: Northern boundary and Hebden Road (behind trees) in the northern portion of the site

Douglas Partners Pty Ltd

Page 3 of 3

Appendix F

Field Work Methodology

Appendix F Field Work Methodology Lot 9 DP1193430 Hebden Road, Muswellbrook

F1.0 Guidelines

The following key guidelines were consulted for the field work methodology:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).

F2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the SPT sample tube or solid flight auger;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID (photoionisation detector) screening;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

F2.1 Field Testing

Field testing is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

F3.0 Groundwater

F3.1 Monitoring Well Installation

Monitoring wells are constructed using class 18 uPVC machine slotted screen and blank sections with screw threaded joints. The screened section of each well is backfilled with a washed sand filter pack to approximately 0.5 m above the screened interval. Each well is completed with a hydrated bentonite plug of at least 0.5 m thick to the surface, finished with a with lockable steel monument set in a concrete plinth.

F3.2 Monitoring Well Development

Groundwater monitoring wells are developed as soon as practicable following well installation. The purpose of well development is to remove sediments and/or drilling fluid introduced to the well during drilling and to facilitate connection of the monitoring well to the aquifer. The wells are developed by pumping / bailing to remove a minimum of five well volumes, or until dry.

F3.3 Groundwater Sampling

Following removal of drilling fluids, the groundwater wells were dry. Groundwater sampling was therefore not conducted.

F4.0 Surface Water Sampling

Surface water sampling is carried out in accordance with DP standard operating procedures. Sample collection is completed using a telescopic pole and decontaminated sample container. A new pair of disposable nitrile gloves are worn at each sample site to minimise potential for cross-contamination. The sampling method is described as follows:

- Where possible, select a sampling point that is a reasonable distance from the edge;
- Immerse the sample container to at least 1 m below the surface (if possible), with the opening pointing directly down to maintain a volume of air in the container, thereby avoiding the collection of any surface films;
- Once under the surface of the water, point the mouth of the sample container up stream so that gloved hands, sample container and/or sample collection device are downstream of the sample being collected;
- If the water is still, move the sample container forward away from the sampler and any equipment to collect a continuous uncontaminated sample;
- Use a sample location specific laboratory-prepared glass bottle without preservatives;
- Decant the water sample into laboratory-prepared bottles, minimising headspace within the sample bottle and cap immediately. The sample location specific laboratory-prepared glass bottle can be used as the sample container for the last sample from that location;

- Dispose of any excess water downstream of the sampling point or at a reasonable distance from sample site;
- Label sample containers with individual and unique identification details, including project number and sample location;
- Place the sample jars into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

F5.0 References

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Appendix G

Site Assessment Criteria

Appendix G Site Assessment Criteria Lot 9 DP1193430 Hebden Road, Muswellbrook

G1.0 Introduction

G1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [the 'NEPM'] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).
- HEPA PFAS National Environmental Management Plan (the 'NEMP') (HEPA, 2020).
- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018).
- NHMRC Guidelines for Managing Risks In Recreational Water (NHMRC, 2008).
- NHMRC, NRMMC Australian Drinking Water Guidelines 6 2011, Version 3.2 (NHMRC, NRMMC, 2016).
- ANZECC Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000).

G1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: commercial / industrial.
 - o Corresponding to land use category 'D', commercial / industrial such as shops, offices, factories and industrial sites.
- Soil type: clay.

G2.0 Soils

G2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are presented in Table 1 and Table 2.

Contaminant	HIL-D
Metals	
Arsenic	3000
Beryllium	500
Boron	300 000
Cadmium	900
Chromium (VI)	3600
Cobalt	4000
Copper	240 000
Lead	1500
Manganese	60 000
Mercury (inorganic)	730
Methyl mercury	180
Nickel	6000
Selenium	10 000
Zinc	400 000
PAH	
B(a)P TEQ	40
Total PAH	4000
OCP	
DDT+DDE+DDD	3600
Aldrin and dieldrin	45
Chlordane	530
Endosulfan	2000
Endrin	100
Heptachlor	50
НСВ	80
Methoxychlor	2500
OPP	
Chlorpyrifos	2000
РСВ	
PCB	7

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HSL-D	HSL-D	HSL-D	HSL-D
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	4	6	9	20
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	NL	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH F1	310	480	NL	NL
TRH F2	NL	NL	NL	NL

Table 2: Health Screening Levels (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are presented in Table 3.

	-		
Contaminant	DC HSL-D	DC HSL-IMW	
Benzene	430	1100	
Toluene	99 000	120 000	
Ethylbenzene	27 000	85 000	
Xylenes	81 000	130 000	
Naphthalene	11 000	29 000	
TRH F1	26 000	82 000	
TRH F2	20 000	62 000	
TRH F3	27 000	85 000	
TRH F4	38 000	120 000	

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

IMW intrusive maintenance worker

G2.2 Health Investigation Levels for Per- and Poly-Fluoroalkyl Substances in Soil

The laboratory analytical results for per- and poly-fluoroalkyl substances (PFAS) in soil have been assessed against HIL published in HEPA (2020). The HIL represent a nationally agreed suite that should be used to inform site investigations. The HIL are intentionally conservative, and an exceedance of these criteria may not constitute a risk if other exposure pathways are controlled. An exceedance of the HIL should trigger further investigations, such as a site-specific risk assessment. At the time of this investigation, screening values were available only for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS).

The HIL derived from Table 2 of HEPA (2020) are presented in Table 4.

Contaminant	HIL-A	HIL-B	HIL-C	HIL-D
PFOS and PFHxS *	0.01	2	1	20
PFOA	0.1	20	10	50

Table 4: Health Investigation Levels (mg/kg)

Notes:

* Includes PFOS only, PFHxS only and the sum of the two.

G2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 6, with inputs into their derivation shown in Table 5.

Variable	Input	Rationale
Age of contaminants	"Aged"	
рН	4.8	Lowest measured result
CEC	5 cmol₀/kg	Conservative assumption
Clay content	10%	Conservative assumption based on varied soil types (sand and clay)
Traffic volumes	high	
State / Territory	NSW	

Contaminant	EIL-D
Metals	
Arsenic	160
Copper	130
Nickel	60
Chromium III	670
Lead	1800
Zinc	260
РАН	
Naphthalene	370
OCP	
DDT	640

Table 6: Ecological Investigation Levels (mg/kg)

Notes:

EIL-D commercial land use

G2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are presented in Table 7.

		1
Contaminant	Soil Type	ESL-D
Benzene	Coarse	75
Toluene	Coarse	135
Ethylbenzene	Coarse	165
Xylenes	Coarse	180
TRH F1	Coarse/ Fine	215*
TRH F2	Coarse/ Fine	170*
TRH F3	Coarse	1700
TRH F4	Coarse	3300
B(a)P	Coarse	1.4
Benzene	Fine	95
Toluene	Fine	135
Ethylbenzene	Fine	185
Xylenes	Fine	95
TRH F1	Coarse/ Fine	215*
TRH F2	Coarse/ Fine	170*
TRH F3	Fine	2500
TRH F4	Fine	6600
B(a)P	Fine	1.4

Table 7: Ecological Screening Levels (mg/kg)

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH >C $_{10}$ -C $_{16}$ including naphthalene ESL-D commercial land use

G2.5 Ecological Soil Guideline Values - PFAS

The interim ecological soil guideline values (EGV) derived from Table3 of HEPA (2020) are presented in Table 8.

Table 8: Eco	logical Soil Guidelin	e Values (mg/kg)	– All Land Uses
--------------	-----------------------	------------------	-----------------

Contaminant	Direct Exposure	Indirect Exposure
PFOS	1	0.01
PFOA	10	NC
PFHxS	NC	NC

Notes: NC no criterion

G2.6 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure eg: penetration of, or damage to, in-ground services.

The adopted management limits are presented in Table 9.

Contaminant	Soil Type	ML-D
TRH F1	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	3500
TRH F4	Coarse	10 000
TRH F1	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	5000
TRH F4	Fine	10 000

Table 9: Management Limits (mg/kg)

Notes: TRH F1 is TRH C₆-C₁₀ including BTEX

TRH F2 is TRH >C $_{10}$ -C $_{16}$ including naphthalene ML-D commercial land use

G3.0 Surface Water

A lake which sustains a freshwater ecosystem is located downgradient of the site. The surface water investigation levels used for interpretation of the surface water data (as a Tier 1 assessment) have been selected based on the potential risks posed to this receptor.

The default guideline values (DGV) for the protection of aquatic ecosystems derived from ANZG (2018) are presented in Table 10 and HEPA (2020) for PFAS are presented in Table 11.

Table 10: Groundwater Investigation Levels for Protection of Aquatic Ecosystems (µg/L)

AR	Fresh Water
Metals	
Arsenic	24
Beryllium	-
Boron	940
Cadmium	0.2
Total Chromium	4.3
Cobalt	1.4
Copper	1.4
Lead	3.4
Manganese	1900
Mercury (inorganic)	0.06
Nickel	11
Selenium (Total)	5
Zinc	8
РАН	
Anthracene	0.4
Naphthalene	16
Benzo(a)pyrene (BaP)	0.1
Fluoranthene	1.4
Phenanthrene	2
OCP	
Aldrin	0.001
alpha-BHC	
alpha-chlordane	0.03
DDT	0.006
Dieldrin	0.01
Endosulfan I	0.03
Endrin	0.01
gamma-Chlordane	0.03
Heptachlor	0.01
Hexachlorobenzene	0.1
Methoxychlor	0.005
Mirex	0.04
Aldrin + Dieldrin (Calculated)	0.011
ΟΡΡ	
Azinphos methyl (Guthion)	0.02
Chlorpyriphos	0.01
Diazinon	0.01
Dimethoate	0.15
Fenitrothion	0.2
Malathion	0.05
Parathion	0.004
Aroclor 1242	0.3
Aroclor 1254	0.01
BTEX	
Benzene	950
Toluene	180
Ethylbenzene	80
o-Xylene	350
m+p-Xylene	275
	have a % LOP, the 'unknown' LOP has be

Notes: Where the contaminant does not have a % LOP, the 'unknown' LOP has been adopted

Contaminant / LOP	Fresh Water DGV
PFOS 99% LOP	0.00023
PFOA 99% LOP	19
PFOS 95% LOP	0.13
PFOA 95% LOP	220

Table 11: Groundwater Investigation Levels for Protection of Aquatic Ecosystems (µg/L) - PFAS

Health-based screening levels for groundwater have been used for preliminary assessment/comparison for petroleum hydrocarbons in surface water are presented in Table 12.

Contaminant	HSL-D	Solubility Limit
CLAY	2 m to <4 m	-
Benzene	30 000	59 000
Toluene	NL	61 000
Ethylbenzene	NL	3900
Xylenes	NL	21 000
Naphthalene	NL	170
TRH F1	NL	9000
TRH F2	NL	3000

Table 12: Groundwater Health Screening Levels for Vapour Intrusion (µg/L)

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C₁₀-C₁₆ minus naphthalene

The solubility limit is defined as the groundwater concentration at which the water cannot dissolve any more of an individual chemical based on a petroleum mixture. The soil vapour that is in equilibrium with the groundwater will be at its maximum. If the derived groundwater HSL exceeds the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

G4.0 References

ANZECC. (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality.* Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater*. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

Page 10 of 10

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NHMRC. (2008). Guidelines for Managing Risks In Recreational Water.

NHMRC, NRMMC. (2016). *Australian Drinking Water Guidelines 6 2011, Version 3.2.* Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council.

Douglas Partners Pty Ltd

Appendix H

Summary of Laboratory Testing Laboratory Reports

Appendix H Summary of Laboratory Testing Lot 9 DP1193430 Hebden Road, Muswellbrook

The results of laboratory analysis are summarised in the following tables:

- Table H1: Summary of Results of Soil Analysis TRH, BTEX, PAH, Metals;
- Table H2: Summary of Results of Surface Water Analysis.

Table H1:	Summary o	of Laborator	y Results	- Metals	, TRH, B	TEX, PAH	H, Phenol	, OCP, C	OPP, PCB																																
						M	letais									TRH				·			BTE	EX			PA	н		Phenol					OCP					OPP	РСВ
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	Total Xylenes	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Naphthalene b	Total PAHs	Phenol	Aldrin & Dieldrin	Total Chlordane	рот+оре+оро ^с	DDT	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Total PCB
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	25	50	100	100	50	0.2	0.5	1	1	0.05	0.5	0.1	0.05	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2	0-0.1m	25/09/23	12 3000 160	<0.4	24 3600 670	16 240000 130	19	<0.1	16	34	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	<0.2	<0.5	<1 NI 85	<1	0.1	<0.5	<0.1	2.9	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-			11	<0.4	28	17	20	<0.1	20	50			- 200	NL	- 2500	- 0000							- DD	-	- NL 90	0.5	0.6	<0.1	5.9	- 000	40 -	-		- 040		2000 -		- 00	2500		
2- [TRIPLICATE]	0-0.1m	25/09/23	3000 160	900 -	3600 670	240000 130	1500 1800	730 -	6000 60	400000 260		- 170	250 215	NL -	- 2500	- 6600						4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
	0.5 m	25/09/23	14	<0.4	29	22	20	<0.1	19	33	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	<0.5	<0.1	<0.05	<	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
5	0.5 m	25/09/25	3000 160	900 -	3600 670	240000 130	1500 1800	730 -	6000 60	400000 260		- 170	250 215	NL -	- 2500	- 6600						4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
6	0-0.1m	25/09/23	22	<0.4	15	13	18	<0.1	11	47	<25	<50	<25	<50	220	<100	<25	<50	120	150	270	⊲0.2	<0.5	<1	<1	<0.05	<0.5	⊲0.1	<0.05	\$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
, in the second	0-0.111	20/00/20	3000 160	900 -	3600 670	240000 130	1500 1800	730 -	6000 60			- 170	250 215		- 2500	- 6600						4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
11	0-0.1m	26/09/23	30	<0.4	20	21	18	<0.1	15	35	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	⊲0.2	<0.5	<1	<1	<0.05	<0.5	⊲0.1	<0.05	<	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			3000 160	900 -	3600 670	240000 130	1500 1800	730 -	6000 60	400000 260		- 170	250 215		- 2500							4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
14	0.5 m	26/09/23	21	<0.4	21	26	19	<0.1	20	48	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	⊲0.2	<0.5	<1	<1	<0.05	<0.5	<0.1	<0.05	<	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			3000 160	900 -	3600 670	240000 130	1500 1800		6000 60	400000 260		- 170	310 215		- 2500	- 6600						4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
17	0-0.1m	26/09/23	10	<0.4	23	42	20	<0.1	36	42	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	⊲0.2	<0.5	<1	<1	<0.05	<0.5	<0.1	<0.05	<	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			3000 160		3600 670	240000 130	1500 1800		6000 60	400000 260		- 170			- 2500							4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
25	0.5 m	26/09/23	7	<0.4	25	35	21	<0.1	29	29	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	⊲0.2	<0.5	<1	<1	<0.05	<0.5	⊲0.1	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			3000 160		3600 670				6000 60				250 215		- 2500				· ·	• •		4 95			NL 95		40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -
26	0-0.1m	27/09/23	7	<0.4	25	30	23	<0.1	27	26	<25	<50	<25	<50	<100	<100	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	<0.05	<0.5	<0.1	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
			3000 160	900 -	3600 670	240000 130	1500 1800	730 -	6000 60	400000 260		- 170	250 215	NL -	- 2500	- 6600						4 95	NL 135	NL 185	NL 95	- 14	40 -	NL 370 4	- 000	660 -	45 -	530 -	3600 640	- 640	100 -	2000 -	50 -	80 -	2500 -	2000 -	7 -

Table H2: Summary of Laboratory Results for Surface Water

Sample ID	+			(2022) ADWG Health	(2008) Recreational Health	ANZG (2018) 95% LOP Fresh	ANZG (2018) 95% LOP Marine	HEPA (2020) 95% LOP Fresh	HEPA (2020) 99% LOP Fresh	NEPC (2013) HSLD 2 m to <4 m Clay	LS1	LS2
Sample Date		PQL	Units			Fresh	Manne	Fresh	Fresh	Clay	20/10/2023	20/10/20
	EC pH	0.01	mS/cm pH units								2.90 8.5	2.80
	Total Suspended Solids (TSS)	5	mg/L								24	16
Physical Parameters	Total Dissolved Solids (TDS) Hardness	5	mg/L mgCaCO3/L								1800 790	1900 780
	Hydroxide Alkalinity (OH-) as CaCO3	5	mg/L								-5	<5
	Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	5	mg/L mg/L								150 20	¥0 13
	Total Alkalinity as CaCO3	5	mg/L								170	150
	Ammonia (as N) Nitrate	0.005	mg/L	0.05	50	0.9	0.91				0.008	0.015 <0.00
	Nitrate	0.005	mg/L mg/L	0.05	3						<0.005	<0.00
Nutrients	Total Nitrogen	0.1	mg/L								0.5	0.5
	TKN in water Phosphate (as P)	0.1	mg/L mg/L								0.5 <0.005	0.5 >0.00
	Phosphorous - Total	0.005	mg/L mg/L								<0.05	<0.05
	Arsenic	1	μgit	10	7	24					6	6
	Beryllium Boron	0.5 20	H9°L H9°L	60 4000	4000	940					<0.5 1900	<0.5
	Cadmium	0.1	µg%.	2	2	0.2	5.5				<0.1	<0.1
	Total Chromium Cobalt	1	H9°L H9°L	50	50	4.3 14	314				ংা <1	<1 <1
letais - total	Copper	1	H9L H9L	2000	2000	14	13				3	3
	Lead	1	μg%	10	10	3.4	4.4				<1	<1
	M anganese M ercury (inosganic)	5 0.05	µg'L µg'L	500	500	1900 0.06	80				9	9
	Nickel	1	H9L H9L	20	20	11	70				6	5
	Selenium (Total)	1	μĝîL	10	10	5	8				6	6
	Zinc Calcium - Disso Ived	1	µg/L mg/L			8	8				3	7
	Potassium - Dissolved	0.5	mg/L								21	21
tetals - dissolved	Sodium - Dissolved	0.5	mg/L								390	320
tetais - dissolved	Magnesium - Dissolved Sulphate, SO4	0.5	mg/L mg/L								99 830	99 820
	Chloride, Cl	1	mg/L								440	440
	ionic Balance	10	%								0	-4.0
	TRH C6-C9 TRH C6-C10	10	μg/L μg/L								<10 <10	<10 <10
	TRH C6-C10 lass BTEX (F1)	10	hðir hðir							NL	<10	<10
	TRH C 10 - C 14	50	μgiL								<50	<50
	TRH C 15 - C 28 TRH C 29 - C 36	100	μg/L μg/L								<100 <100	<100 <100
RH	Total we TRH (C 10-C36)	50	µg%.								<50	<50
	TRH >C10 - C16 TRH >C10 - C16	50 50	µg%.								<50	<50
	Iess Naphthalene (F2) TRH >C16 - C34	50 100	µց%. µց%							NL	<50 <100	<50 <100
	TRH >C34 - C40	100	μgĩ								<100	<100
	Total eve TRH (>C 10-C40) Benzene	50 1	µg%.		1	960	700			30	<50 <1	<50 <1
	Benzene Toluene	1	Hĝ ¹ L	1 800		180	180			30 NL	<1	<1
TEX	Ethylberæne	1	H9°L	300		80	80			NL	<1	<1
	o-Xylene m -p-Xylene	1	μg%_ μg%_			350 275	75			NL NL	<1 <2	<1
	Acenaphthene	0.1	hðr hðr								<0.1	<0.1
	Acenaphthylene	0.1	μĝΈ								<0.1	<0.1
	Anthracene Benzo (a)anthracene	0.1	μgiL μgiL			0.4	0.4				<0.1	<0.1 <0.1
	Naphthalene	0.2	μĝîL			15	70				<0.1	<0.1
	Benzo (a)pyrene (BaP) Benzo (a)pyrene TEQ	0.1	µg%.	0.01	0.01	0.1	0.2				<0.1	<0.1 <0.5
	Benzo (a)pyrene TEQ Benzo (b.j+k)fluoranthene	0.5	μgiL μgiL								<0.5 <0.2	<0.5 <0.2
PAH	Benzo (g.h.i)perylene	0.1	μĝΈ								<0.1	<0.1
	Chrysene Dibenzo (a,h)anthracene	0.1	H9°L H9°L								<0.1	<0.1
	Fluoranthene	0.1	μցե μցե			14	14				<0.1	<0.1
	F luo rene	0.1	μgiL								<0.1	<0.1
	Indeno (12,3-o,d)pyrene Phenanthrene	0.1	µg% µg%			2	2				<0.1 <0.1	<0.1 <0.1
	Pyrene	0.1	μgĩL								<0.1	<0.1
	Total we PAH's	0.1	μĝΈ								<0.1	<0.1
	Aldrin alpha-BHC	0.01	H9L H9L			0.001	0.003				<0.01	<0.0 <0.0
	alpha-chlordane	0.01	HQ°L	2	1	0.03					<0.01	<0.0
	beta-BHC	0.05	μĝt								<0.05	<0.05
	DDE DDT	0.01	μĝΈ μĝΈ	9	20	0.006	0.0004				<0.01	<0.0 <0.00
	delta-BHC	0.05	μĝĩ								<0.05	<0.05
	Dieldrin Endosulfan I	0.01	μĝ ¹ . μĝ ¹ .	20	30	0.01	0.01				<0.01 <0.02	<0.0 <0.0
	Endo sulfan II	0.02	μgit								<0.02	<0.00
CP	Endosulfan Sulphate	0.02	нĝ°L								<0.02	<0.03
	Endrin gamma-Chlordane	0.01	μgiL μgiL			0.01	0.008				<0.01	<0.0 <0.0
	e Heptachlor	0.01	μgiL	0.3	0.3	0.01	0.0004				<0.01	<0.0
	Heptachlor Epoxide	0.01	μĝîL		0.3						<0.01	<0.0
	Hexachlorobenzene gamma-BHC	0.01	μĝΈ. μĝΈ			0.1	0.1				<0.01 <0.05	<0.0 <0.0
	M ethoxychior	0.02	μgiL	300		0.005	0.004				<0.02	<0.03
	M irex DDD	0.02	μg%_ μg%_			0.04					<0.02 <0.01	<0.00 <0.0
	Aldrin + Dieldrin (Calculated)	0.01	µgr.	0.3	0.3	0.011	0.003				<0.02	<0.0
	Azinphos methyl (Guthion)	0.2	μgiL			0.02					<0.2	<0.2
	Bromophos-ethyl Coursephos	0.05	µg%.		10						<0.05	<0.05
	Coumaphos Chlorpyriphos	0.009	μgiL μgiL	10	10	0.01	600.0				<0.009	<0.00
	Chlorpyriphos-methyl	0.05	μgiL								<0.05	<0.05
	Diazinon Dichlorvos	0.01	μgit. μgit	4	3	0.01					<0.01 <0.05	<0.0 <0.0
	Dimethoate	0.1	μgĩ	7	50	0.15					<0.1	<0.1
	Disuffoton Ethion	0.05	µg%.	4	3						<0.05 <0.05	<0.05
IPP	Ethion Ronnel (fenchiorphos)	0.05	µgL µgL		3						<0.05	<0.05
	Fenamiphos	0.05	μĝĩ	0.5	0.3						<0.05	<0.05
	Fenthion Fenitrothion	0.07	μg"L μg"L	7	10	0.2	0.001				<0.05 <0.05	<0.05 <0.05
	M alathion	0.05	μρτ	70		0.05					<0.05	<0.05
	M ethidathion	0.05	μĝîL	6	30						<0.05	<0.05
	M evinphos Parathion	0.05	μցՂ μցՂ	5 20	5	0.004					<0.05 <0.004	<0.05 <0.00
	Parathion-methyl	0.05	μgiL	0.7	100						<0.05	<0.05
	Phorate Phosalone	0.05	μg'L μg'L								<0.05 <0.05	<0.05
	Aroclor 1016	0.1	hðr hðr								<0.1	<0.1
	Aroclor 1221	0.1	μgiL								<0.1	<0.1
PCB	Aroclor 1232 Aroclor 1242	0.1	μg%_ μg%_			0.3					<0.1 <0.1	<0.1
	Aroclor 1248	0.1	μgiL								<0.1	<0.1
	Aroclor 1254	0.1	μgĩ			0.01					<0.1	<0.1
	Aroclor 1260 Perfuorobutanesulfonic acid	0.1	μց%. μց%.				_				<0.1 <0.001	<0.1 0.00
	Perfluoropentanesulfonic acid	0.001	μgĩL								<0.001	<0.00
	Perfluoro hexanesulfonic acid - P FHxS Perfluoro heptanesulfonic acid	0.001	μցՂ μցՂ								0.004	0.00
	Perfluorooctanesulfonic acid Perfluorooctanesulfonic acid PFOS	0.001	hðr hðr					0.13	0.00023		0.004	×00.0
	Perfluoro decanesulfonic acid	0.002	µg%.								<0.002 0.007	<0.00 0.00
	Perfluorobutanoic acid Perfluoropentanoic acid	0.002	µցՂ µցՂ								0.007	0.008
	Perfluoro hexanoic acid	0.001	µg1.								0.004	0.004
	Perfluoro heptanoic acid Perfluoro octanoic acid PEQA	0.001	µg%_	0.56				220	19		0.003 <0.001	0.00
	Perfluoro octanoic acid PFOA Perfluoro nonanoic acid	0.001	µց%. µց%.	0.56				220			<0.001 <0.001	<0.00 <0.00
	Perfluoro decano ic acid	0.002	μg%L								<0.002	<0.00
	Perfluoro undecanoic acid Perfluoro do decano ic acid	0.002	μց%. μց%.					-			<0.002 <0.005	<0.00 <0.00
PFAS	Perfluorododecanoic acid Perfluorotridecanoic acid	0.005	μցՂ μցՂ								<0.005	<0.00 <0.0
	Perfluorotetradecanoic acid	0.05	µg%L								<0.05	<0.05
	42 FTS	0.001	µg%L								<0.001	<0.00
	62 FTS 82 FTS	0.001	µցՂ µցՂ								<0.001 <0.002	<0.00 <0.00
	102 FTS	0.002	μց%. μց%.								<0.002	<0.00 <0.00
	Perfluoro octane sulfonamide	0.01	µg%L								<0.01	<0.0°
	N-M ethyl perfluorooctane sulfonamide N-Ethyl perfluorooctanesulfon amide	0.05	μg%_ μg%_								<0.05	<0.05
	N-Ethyl perfluorooctanesulfon amide N-M e perfluorooctanesulfonamid oethane	0.1	μցՂ μցՂ								<0.1 <0.05	<0.1
	N-Et perfluorooctanesulfonamid oethano	0.5	μgiL								<0.5	<0.5
	MePerfluorooctanesulf-amid oacetic acid	0.002	µg/L								<0.002	<0.00
	EtPerfluorooctanesulf-amid o acetic acid	0.002	µg%L			_	_				<0.002	<0.00
	Total Positive PFHxS & PFOS	0.001	µg/L	0.07							0.007	
		0.001 0.001 0.001	րցե րցե րցե	0.07							0.007	0.00

Practical quantitation inst: Bitable calo indicate assessments of guidatine values Waters or or mining addition takes assessments (the calls a balact to the colors of the topheral guidation value assessment) MAPC pCQ19() advantation and the accessment of Balac contension/any Manarous MSP (top an encoded 2014) summersion of Louised of Protocol MAPC pCQ19() advantation and the accessment of Balac contension/any Manarous MSP (top an encoded 2014) summersion of Louised of Protocol MAPC pCQ19() advantation and the accessment of Balac contension/any Manarous MSP (top and top and the accessment) MAPC pCQ19() Advantation and the accessment of Balac contension and Manine MAROU Callery (STM and The accessment) MAPC pCQ19() Advantation and the accessment of Management Plane, 40% and 40% level of protection for Fresh aquadic accessments NMMER (CG10) Advantation for Management Plane, 40% and 40% level of protection for Fresh aquadic accessments NMMER (CG10) Advantation for Management Plane, 40% and MAROU Callery composite its lowithower level of protection Ack (or) of mining as a frain plane. Conference and the plane accessment of Plane and Plane Water Accessment Head Conference as the plane. Conference are the plane. Conference are the plane. Content form NMMER (CG10) Guidance on Plane and Plane advances (PFAS) in Researational Water Conference are the plane conference and the plane advances (PFAS) in Researational Water Conference are the plane conference and Plane advances (PFAS) in Researational Water Conference are the plane conference and plane advances (PFAS) in Researational Water Conference are the plane conference and Plane advances (PFAS) in Researational Water Conference are the plane conference advances advances (PFAS) in Researational Water Conference are the plane conference advances advances (PFAS) in Researational Water Conference and Theorem was used as guer AAZECC (2005) s per ANZG

b c d

Appendix H, Summary of Laboratory Testing Lot 9 DP1193430 Hebden Road, Muswellbrook

224764.00.R.001.Rev0 November 2023

CERTIFICATE OF ANALYSIS 334958

Client Details	
Client	Douglas Partners Newcastle
Attention	Michael Harris
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	224764.00 Musewilbrook
Number of Samples	14 Soil
Date samples received	10/10/2023
Date completed instructions received	10/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	17/10/2023	
Date of Issue	17/10/2023	
NATA Accreditation Number 290	01. This document shall not be reproduced except in full.	
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist Steven Luong, Senior Chemist Tim Toll, Chemist (FAS) <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	107	114	111	77

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		334958-6	334958-7	334958-8
Your Reference	UNITS	17	25	26
Depth		0-0.1	0.5	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	118	110	108

svTRH (C10-C40) in Soil						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	120	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	150	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	270	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	220	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	220	<50	<50
Surrogate o-Terphenyl	%	67	69	72	69	71

svTRH (C10-C40) in Soil				
Our Reference		334958-6	334958-7	334958-8
Your Reference	UNITS	17	25	26
Depth		0-0.1	0.5	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	70	72	70

PAHs in Soil						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.8	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	2.9	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	98	94	94	98

PAHs in Soil					
Our Reference		334958-6	334958-7	334958-8	334958-15
Your Reference	UNITS	17	25	26	2 - [TRIPLICATE]
Depth		0-0.1	0.5	0-0.1	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	13/10/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	1.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	1.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.9
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.7
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.2
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	5.9
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	0.7
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	0.7
Surrogate p-Terphenyl-d14	%	102	92	100	99

Organochlorine Pesticides in soil					_	
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	97	97	97	98

Organochlorine Pesticides in soil				
Our Reference		334958-6	334958-7	334958-8
Your Reference	UNITS	17	25	26
Depth		0-0.1	0.5	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	96	99

Organophosphorus Pesticides in Soil						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	97	97	97	98

Organophosphorus Pesticides in Soil				
Our Reference		334958-6	334958-7	334958-8
Your Reference	UNITS	17	25	26
Depth		0-0.1	0.5	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	96	99

PCBs in Soil						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	97	97	97	98

PCBs in Soil				
Our Reference		334958-6	334958-7	334958-8
Your Reference	UNITS	17	25	26
Depth		0-0.1	0.5	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	96	99

Acid Extractable metals in soil					_	
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Arsenic	mg/kg	12	14	22	30	21
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	24	29	15	20	21
Copper	mg/kg	16	22	13	21	26
Lead	mg/kg	19	20	18	18	19
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	16	19	11	15	20
Zinc	mg/kg	34	33	47	35	48

Acid Extractable metals in soil					
Our Reference		334958-6	334958-7	334958-8	334958-15
Your Reference	UNITS	17	25	26	2 - [TRIPLICATE]
Depth		0-0.1	0.5	0-0.1	0-0.1
Date Sampled		26/09/2023	26/09/2023	27/09/2023	25/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Arsenic	mg/kg	10	7	7	11
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	23	25	25	28
Copper	mg/kg	42	35	30	17
Lead	mg/kg	20	21	23	20
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	36	29	27	20
Zinc	mg/kg	42	29	26	50

Misc Soil - Inorg						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		334958-6	334958-7	334958-8		
Your Reference	UNITS	17	25	26		
Depth		0-0.1	0.5	0-0.1		
Date Sampled		26/09/2023	26/09/2023	27/09/2023		
Type of sample		Soil	Soil	Soil		
Date prepared	-	12/10/2023	12/10/2023	12/10/2023		

12/10/2023

<5

-

mg/kg

12/10/2023

<5

12/10/2023

<5

Date analysed

Total Phenolics (as Phenol)

Misc Inorg - Soil						
Our Reference		334958-1	334958-5	334958-8	334958-9	334958-10
Your Reference	UNITS	2	14	26	9	10
Depth		0-0.1	0.5	0-0.1	1-1.45	1-1.35
Date Sampled		25/09/2023	26/09/2023	27/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Date analysed	-	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
pH 1:5 soil:water	pH Units	5.6	7.1	7.0	5.2	7.8
Electrical Conductivity 1:5 soil:water	µS/cm	220	88	200	980	750
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	1,200	770
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	[NA]	450	490

Misc Inorg - Soil					
Our Reference		334958-11	334958-12	334958-13	334958-14
Your Reference	UNITS	10	14	15	23
Depth		2.5-2.65	1-1.2	1-1.45	2.5-2.7
Date Sampled		26/09/2023	26/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Date analysed	-	13/10/2023	13/10/2023	13/10/2023	13/10/2023
pH 1:5 soil:water	pH Units	4.8	7.8	9.1	7.4
Electrical Conductivity 1:5 soil:water	µS/cm	560	76	420	780
Chloride, Cl 1:5 soil:water	mg/kg	610	23	170	1,300
Sulphate, SO4 1:5 soil:water	mg/kg	350	10	65	380

CEC				
Our Reference		334958-1	334958-5	334958-8
Your Reference	UNITS	2	14	26
Depth		0-0.1	0.5	0-0.1
Date Sampled		25/09/2023	26/09/2023	27/09/2023
Type of sample		Soil	Soil	Soil
Date prepared	-	17/10/2023	17/10/2023	17/10/2023
Date analysed	-	17/10/2023	17/10/2023	17/10/2023
Exchangeable Ca	meq/100g	6.2	16	4.8
Exchangeable K	meq/100g	1.1	0.5	0.4
Exchangeable Mg	meq/100g	4.8	10	7.7
Exchangeable Na	meq/100g	0.2	0.9	1.4
Cation Exchange Capacity	meq/100g	12	28	14

Moisture						
Our Reference		334958-1	334958-2	334958-3	334958-4	334958-5
Your Reference	UNITS	2	5	6	11	14
Depth		0-0.1	0.5	0-0.1	0-0.1	0.5
Date Sampled		25/09/2023	25/09/2023	25/09/2023	26/09/2023	26/09/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023
Moisture	%	9.1	18	11	17	19
Moisture						
Our Reference		334958-6	334958-7	334958-8		
Your Reference	UNITS	17	25	26		
Depth		0-0.1	0.5	0-0.1		
Date Sampled		26/09/2023	26/09/2023	27/09/2023		

Type of sample		Soil	Soil	Soil
Date prepared	-	11/10/2023	11/10/2023	11/10/2023
Date analysed	-	12/10/2023	12/10/2023	12/10/2023
Moisture	%	18	19	21

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2	
Date extracted	-			11/10/2023	1	11/10/2023	11/10/2023		11/10/2023	11/10/2023	
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	118	115	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	118	115	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	123	120	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	119	115	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	116	113	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	117	114	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	117	114	
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	108	1	106	97	9	119	104	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Duplicate Spike Re				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2
Date extracted	-			11/10/2023	1	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	127	94
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	120	95
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	114	79
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	127	94
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	120	95
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	114	79
Surrogate o-Terphenyl	%		Org-020	84	1	67	67	0	95	70

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2
Date extracted	-			11/10/2023	1	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	93
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	99	99
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.2	67	90	86
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	2.2	93	102	96
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.5	50	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.6	1.7	96	104	94
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.5	1.2	82	103	97
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.5	86	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.4	67	83	81
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.3	0.6	67	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.1	0.3	100	96	98
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.2	67	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.2	67	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	97	1	94	93	1	93	94

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2
Date extracted	-			11/10/2023	1	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	104
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	100
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	97
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	95
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	90
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	105
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	110
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	100
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	98
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	138	136
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-022/025	99	1	96	96	0	98	100

QUALITY CONTRC	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2
Date extracted	-			11/10/2023	1	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	117	115
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	93
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	101	101
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	106
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	104
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	99
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	98
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	99	1	96	96	0	98	100

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2
Date extracted	-			11/10/2023	1	11/10/2023	11/10/2023		11/10/2023	11/10/2023
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	117	120
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	99	1	96	96	0	98	100

QUALITY CONTROL: Acid Extractable metals in soil					Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-2
Date prepared	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	12/10/2023
Arsenic	mg/kg	4	Metals-020	<4	1	12	11	9	114	103
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	107	91
Chromium	mg/kg	1	Metals-020	<1	1	24	33	32	125	103
Copper	mg/kg	1	Metals-020	<1	1	16	19	17	112	114
Lead	mg/kg	1	Metals-020	<1	1	19	22	15	123	95
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	119	113
Nickel	mg/kg	1	Metals-020	<1	1	16	22	32	111	98
Zinc	mg/kg	1	Metals-020	<1	1	34	57	51	114	98

QUALITY CONTROL: Misc Soil - Inorg					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date prepared	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	
Date analysed	-			12/10/2023	1	12/10/2023	12/10/2023		12/10/2023	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	102	[NT]

QUALITY	CONTROL:	Misc Ino	rg - Soil			Duj	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	334958-14
Date prepared	-			13/10/2023	9	13/10/2023	13/10/2023		13/10/2023	13/10/2023
Date analysed	-			13/10/2023	9	13/10/2023	13/10/2023		13/10/2023	13/10/2023
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	9	5.2	5.2	0	98	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	9	980	900	9	105	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	9	1200	1100	9	108	98
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	9	450	440	2	111	116

QU	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	334958-8
Date prepared	-			17/10/2023	5	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Date analysed	-			17/10/2023	5	17/10/2023	17/10/2023		17/10/2023	17/10/2023
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	5	16	15	6	103	108
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	5	0.5	0.5	0	109	103
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	5	10	9.4	6	104	105
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	5	0.9	1	11	111	96

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 334958-1 for Zn. Therefore a triplicate result has been issued as laboratory sample number 334958-15.

PAHs in Soil - The laboratory RPD acceptance criteria has been exceeded for 334958-1. Therefore a triplicate result has been issued as laboratory sample number 334958-15.

PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of sample/s 334958-1.

Samples were out of the recommended holding time for this analysis pH/EC.

CERTIFICATE OF ANALYSIS 336033

Client Details	
Client	Douglas Partners Newcastle
Attention	Michael Harris
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	<u>224764.00, Muswellbrook</u>
Number of Samples	2 Water
Date samples received	24/10/2023
Date completed instructions received	24/10/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	31/10/2023						
Date of Issue	31/10/2023						
NATA Accreditation Number 2901	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with IS	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Liam Timmins, Organics Supervisor Priya Samarawickrama, Senior Chemist Sean McAlary, Chemist

<u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date extracted	-	24/10/2023	24/10/2023
Date analysed	-	25/10/2023	25/10/2023
TRH C ₆ - C ₉	µg/L	<10	<10
TRH C6 - C10	µg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	µg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	µg/L	<2	<2
o-xylene	µg/L	<1	<1
Naphthalene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	94	94
Surrogate Toluene-d8	%	91	86
Surrogate 4-Bromofluorobenzene	%	119	120

svTRH (C10-C40) in Water			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date extracted	-	25/10/2023	25/10/2023
Date analysed	-	26/10/2023	26/10/2023
TRH C ₁₀ - C ₁₄	µg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50
TRH >C10 - C16	µg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50
Surrogate o-Terphenyl	%	67	72

PAHs in Water			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date extracted	-	25/10/2023	25/10/2023
Date analysed	-	30/10/2023	30/10/2023
Naphthalene	µg/L	<0.1	<0.1
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	72	78

OCPs in Water - Low Level			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date extracted	-	25/10/2023	25/10/2023
Date analysed	-	30/10/2023	30/10/2023
alpha-BHC	µg/L	<0.05	<0.05
НСВ	µg/L	<0.01	<0.01
beta-BHC	µg/L	<0.05	<0.05
gamma-BHC	µg/L	<0.05	<0.05
Heptachlor	μg/L	<0.01	<0.01
delta-BHC	µg/L	<0.05	<0.05
Aldrin	µg/L	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01
gamma-Chlordane	µg/L	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01
Endosulfan I	μg/L	<0.02	<0.02
pp-DDE	µg/L	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01
Endosulfan II	μg/L	<0.02	<0.02
pp-DDD	µg/L	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006
Endosulfan Sulphate	µg/L	<0.02	<0.02
Methoxychlor	µg/L	<0.02	<0.02
Mirex	µg/L	<0.02	<0.02
Surrogate TCMX	%	63	67

OP in water LL ANZECCF/ADWG			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date extracted	-	25/10/2023	25/10/2023
Date analysed	-	30/10/2023	30/10/2023
Dichlorvos	µg/L	<0.05	<0.05
Mevinphos	µg/L	<0.05	<0.05
Phorate	µg/L	<0.05	<0.05
Dimethoate	µg/L	<0.1	<0.1
Diazinon	µg/L	<0.01	<0.01
Disulfoton	µg/L	<0.05	<0.05
Chlorpyriphos-methyl	µg/L	<0.05	<0.05
Parathion-Methyl	µg/L	<0.05	<0.05
Ronnel	µg/L	<0.05	<0.05
Fenitrothion	µg/L	<0.05	<0.05
Malathion	µg/L	<0.05	<0.05
Chlorpyriphos	µg/L	<0.009	<0.009
Fenthion	µg/L	<0.05	<0.05
Parathion	µg/L	<0.004	<0.004
Bromophos ethyl	µg/L	<0.05	<0.05
Methidathion	µg/L	<0.05	<0.05
Fenamiphos	µg/L	<0.05	<0.05
Ethion	µg/L	<0.05	<0.05
Phosalone	µg/L	<0.05	<0.05
Azinphos-methyl (Guthion)	µg/L	<0.2	<0.2
Coumaphos	µg/L	<0.05	<0.05
Surrogate TCMX	%	63	67

PCBs in Water - Low Level			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date extracted	-	25/10/2023	25/10/2023
Date analysed	-	30/10/2023	30/10/2023
Aroclor 1016	μg/L	<0.1	<0.1
Aroclor 1221	μg/L	<0.1	<0.1
Aroclor 1232	μg/L	<0.1	<0.1
Aroclor 1242	µg/L	<0.1	<0.1
Aroclor 1248	μg/L	<0.1	<0.1
Aroclor 1254	μg/L	<0.1	<0.1
Aroclor 1260	μg/L	<0.1	<0.1
Surrogate TCMX	%	63	67

PFAS in Water LOW LEVEL Extend			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date prepared	-	26/10/2023	26/10/2023
Date analysed	-	26/10/2023	26/10/2023
Perfluorobutanesulfonic acid	µg/L	<0.001	0.001
Perfluoropentanesulfonic acid	µg/L	<0.001	<0.001
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.004	0.003
Perfluoroheptanesulfonic acid	µg/L	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	µg/L	0.004	0.004
Perfluorodecanesulfonic acid	µg/L	<0.002	<0.002
Perfluorobutanoic acid	µg/L	0.007	0.008
Perfluoropentanoic acid	µg/L	0.005	0.005
Perfluorohexanoic acid	µg/L	0.004	0.004
Perfluoroheptanoic acid	µg/L	0.003	0.004
Perfluorooctanoic acid PFOA	µg/L	<0.001	<0.001
Perfluorononanoic acid	µg/L	<0.001	<0.001
Perfluorodecanoic acid	µg/L	<0.002	<0.002
Perfluoroundecanoic acid	µg/L	<0.002	<0.002
Perfluorododecanoic acid	µg/L	<0.005	<0.005
Perfluorotridecanoic acid	µg/L	<0.01	<0.01
Perfluorotetradecanoic acid	µg/L	<0.05	<0.05
4:2 FTS	µg/L	<0.001	<0.001
6:2 FTS	µg/L	<0.001	<0.001
8:2 FTS	µg/L	<0.002	<0.002
10:2 FTS	µg/L	<0.002	<0.002
Perfluorooctane sulfonamide	µg/L	<0.01	<0.01
N-Methyl perfluorooctane sulfonamide	µg/L	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	µg/L	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	µg/L	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	µg/L	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	µg/L	<0.002	<0.002
EtPerfluorooctanesulf- amid oacetic acid	µg/L	<0.002	<0.002
Surrogate ¹³ C ₈ PFOS	%	100	100
Surrogate ¹³ C ₂ PFOA	%	96	91
Extracted ISTD ¹³ C ₃ PFBS	%	85	79
Extracted ISTD ¹⁸ O ₂ PFHxS	%	86	86
Extracted ISTD ¹³ C ₄ PFOS	%	90	93
Extracted ISTD ¹³ C ₄ PFBA	%	51	41

PFAS in Water LOW LEVEL Extend			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Extracted ISTD ¹³ C ₃ PFPeA	%	87	92
Extracted ISTD ¹³ C ₂ PFHxA	%	95	92
Extracted ISTD ¹³ C ₄ PFHpA	%	91	88
Extracted ISTD ¹³ C ₄ PFOA	%	129	135
Extracted ISTD ¹³ C ₅ PFNA	%	109	109
Extracted ISTD ¹³ C ₂ PFDA	%	126	127
Extracted ISTD ¹³ C ₂ PFUnDA	%	136	136
Extracted ISTD ¹³ C ₂ PFDoDA	%	141	139
Extracted ISTD ¹³ C ₂ PFTeDA	%	123	109
Extracted ISTD ¹³ C ₂ 4:2FTS	%	195	194
Extracted ISTD ¹³ C ₂ 6:2FTS	%	#	#
Extracted ISTD ¹³ C ₂ 8:2FTS	%	#	#
Extracted ISTD ¹³ C ₈ FOSA	%	87	86
Extracted ISTD d₃ N MeFOSA	%	110	106
Extracted ISTD d₅ N EtFOSA	%	116	108
Extracted ISTD d7 N MeFOSE	%	115	115
Extracted ISTD d ₉ N EtFOSE	%	109	99
Extracted ISTD d ₃ N MeFOSAA	%	#	#
Extracted ISTD d₅ N EtFOSAA	%	#	#
Total Positive PFHxS & PFOS	μg/L	0.007	0.007
Total Positive PFOA & PFOS	μg/L	0.004	0.004
Total Positive PFAS	µg/L	0.027	0.029

All metals in water - total			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date prepared	-	25/10/2023	25/10/2023
Date analysed	-	26/10/2023	26/10/2023
Arsenic-Total	µg/L	6	6
Beryllium-Total	µg/L	<0.5	<0.5
Boron-Total	µg/L	1,300	1,300
Cadmium-Total	µg/L	<0.1	<0.1
Chromium-Total	µg/L	<1	<1
Cobalt-Total	µg/L	<1	<1
Copper-Total	µg/L	3	3
Lead-Total	µg/L	<1	<1
Manganese-Total	µg/L	9	9
Mercury-Total	µg/L	<0.05	<0.05
Nickel-Total	µg/L	6	5
Selenium-Total	µg/L	6	6
Zinc-Total	μg/L	3	7

Metals in Waters - Acid extractable			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date prepared	-	25/10/2023	25/10/2023
Date analysed	-	25/10/2023	25/10/2023
Phosphorus - Total	mg/L	<0.05	<0.05

Miscellaneous Inorganics			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date prepared	-	24/10/2023	24/10/2023
Date analysed	-	24/10/2023	24/10/2023
рН	pH Units	8.5	8.4
Electrical Conductivity	μS/cm	2,900	2,800
Total Suspended Solids	mg/L	24	16
Total Dissolved Solids (grav)	mg/L	1,800	1,800
Phosphate as P in water	mg/L	<0.005	<0.005

Nltrogen - forms in water			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date prepared	-	25/10/2023	25/10/2023
Date analysed	-	25/10/2023	25/10/2023
TKN in water	mg/L	0.5	0.5
Nitrate as N in water	mg/L	<0.005	<0.005
Nitrite as N in water	mg/L	<0.005	<0.005
Ammonia as N in water	mg/L	0.008	0.015
Total Nitrogen in water	mg/L	0.5	0.5

Ion Balance			
Our Reference		336033-1	336033-2
Your Reference	UNITS	LS1	LS2
Date Sampled		20/10/2023	20/10/2023
Type of sample		Water	Water
Date prepared	-	24/10/2023	24/10/2023
Date analysed	-	24/10/2023	24/10/2023
Calcium - Dissolved	mg/L	150	150
Potassium - Dissolved	mg/L	21	21
Sodium - Dissolved	mg/L	390	320
Magnesium - Dissolved	mg/L	99	99
Hardness	mgCaCO 3 /L	790	780
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	150	140
Carbonate Alkalinity as CaCO ₃	mg/L	20	13
Total Alkalinity as CaCO₃	mg/L	170	150
Sulphate, SO4	mg/L	830	820
Chloride, Cl	mg/L	440	440
Ionic Balance	%	0	-4.0

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and lodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY CONT	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	iplicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/10/2023	[NT]		[NT]	[NT]	24/10/2023	
Date analysed	-			25/10/2023	[NT]		[NT]	[NT]	25/10/2023	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	91	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	91	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	88	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	89	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	92	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	93	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	92	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	93	[NT]		[NT]	[NT]	91	
Surrogate Toluene-d8	%		Org-023	84	[NT]		[NT]	[NT]	94	
Surrogate 4-Bromofluorobenzene	%		Org-023	117	[NT]		[NT]	[NT]	103	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			25/10/2023	[NT]		[NT]	[NT]	25/10/2023	
Date analysed	-			26/10/2023	[NT]		[NT]	[NT]	26/10/2023	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	115	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	112	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	115	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	112	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	100	
Surrogate o-Terphenyl	%		Org-020	83	[NT]		[NT]	[NT]	98	

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/10/2023	[NT]		[NT]	[NT]	25/10/2023	
Date analysed	-			30/10/2023	[NT]		[NT]	[NT]	30/10/2023	
Naphthalene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	117	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	106	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	
Pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Benzo(a)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	112	
Benzo(b,j+k)fluoranthene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	94	[NT]		[NT]	[NT]	104	

QUALITY (CONTROL: OCF	Ps in Wate	er - Low Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/10/2023	[NT]		[NT]	[NT]	25/10/2023	
Date analysed	-			30/10/2023	[NT]		[NT]	[NT]	30/10/2023	
alpha-BHC	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	110	
НСВ	µg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
beta-BHC	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	108	
gamma-BHC	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	111	
delta-BHC	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Aldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	110	
Heptachlor Epoxide	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	104	
gamma-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
pp-DDE	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	111	
Dieldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	104	
Endrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	112	
Endosulfan II	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
pp-DDD	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	114	
pp-DDT	μg/L	0.006	Org-022	<0.006	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	118	
Methoxychlor	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Mirex	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	91	[NT]		[NT]	[NT]	111	

QUALITY CONTR	ROL: OP in w	ater LL A	NZECCF/ADWG			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/10/2023	[NT]		[NT]	[NT]	25/10/2023	
Date analysed	-			30/10/2023	[NT]		[NT]	[NT]	30/10/2023	
Dichlorvos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	120	
Mevinphos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Phorate	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Dimethoate	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	µg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Disulfoton	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Parathion-Methyl	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	104	
Fenitrothion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	118	
Malathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	114	
Chlorpyriphos	µg/L	0.009	Org-022/025	<0.009	[NT]		[NT]	[NT]	107	
Fenthion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Parathion	µg/L	0.004	Org-022/025	<0.004	[NT]		[NT]	[NT]	113	
Bromophos ethyl	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Methidathion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Fenamiphos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	118	
Phosalone	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Coumaphos	µg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	91	[NT]		[NT]	[NT]	111	

QUALITY CON	ITROL: PCB	s in Wate	er - Low Level			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			25/10/2023	[NT]		[NT]	[NT]	25/10/2023	
Date analysed	-			30/10/2023	[NT]		[NT]	[NT]	30/10/2023	
Aroclor 1016	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	92	
Aroclor 1260	µg/L	0.1	Org-021/022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021/022/025	91	[NT]	[NT]	[NT]	[NT]	111	[NT]

QUALITY CONTRO	I · PFAS in	Water I C	WIEVEL Extend			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	336033-2
Date prepared	-			26/10/2023	1	26/10/2023	26/10/2023		26/10/2023	26/10/2023
Date analysed	-			26/10/2023	1	26/10/2023	26/10/2023		26/10/2023	26/10/2023
Perfluorobutanesulfonic acid	μg/L	0.001	Org-029	<0.001	1	<0.001	0.001	0	98	107
Perfluoropentanesulfonic acid	µg/L	0.001	Org-029	<0.001	1	<0.001	<0.001	0	102	113
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.001	Org-029	<0.001	1	0.004	0.003	29	96	100
Perfluoroheptanesulfonic acid	µg/L	0.001	Org-029	<0.001	1	<0.001	<0.001	0	98	113
Perfluorooctanesulfonic acid PFOS	µg/L	0.001	Org-029	<0.001	1	0.004	0.003	29	99	98
Perfluorodecanesulfonic acid	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	65	58
Perfluorobutanoic acid	µg/L	0.002	Org-029	<0.002	1	0.007	0.008	13	100	99
Perfluoropentanoic acid	µg/L	0.002	Org-029	<0.002	1	0.005	0.005	0	95	97
Perfluorohexanoic acid	µg/L	0.001	Org-029	<0.001	1	0.004	0.004	0	102	101
Perfluoroheptanoic acid	µg/L	0.001	Org-029	<0.001	1	0.003	0.003	0	108	107
Perfluorooctanoic acid PFOA	µg/L	0.001	Org-029	<0.001	1	<0.001	<0.001	0	94	87
Perfluorononanoic acid	µg/L	0.001	Org-029	<0.001	1	<0.001	<0.001	0	126	135
Perfluorodecanoic acid	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	96	86
Perfluoroundecanoic acid	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	102	103
Perfluorododecanoic acid	µg/L	0.005	Org-029	<0.005	1	<0.005	<0.005	0	97	88
Perfluorotridecanoic acid	µg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	87	95
Perfluorotetradecanoic acid	µg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	103	115
4:2 FTS	µg/L	0.001	Org-029	<0.001	1	<0.001	<0.001	0	110	110
6:2 FTS	µg/L	0.001	Org-029	<0.001	1	<0.001	<0.001	0	100	86
8:2 FTS	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	97	105
10:2 FTS	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	92	97
Perfluorooctane sulfonamide	µg/L	0.01	Org-029	<0.01	1	<0.01	<0.01	0	103	105
N-Methyl perfluorooctane sulfonamide	µg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	103	101
N-Ethyl perfluorooctanesulfon amide	µg/L	0.1	Org-029	<0.1	1	<0.1	<0.1	0	105	112
N-Me perfluorooctanesulfonamid oethanol	µg/L	0.05	Org-029	<0.05	1	<0.05	<0.05	0	95	94
N-Et perfluorooctanesulfonamid oethanol	µg/L	0.5	Org-029	<0.5	1	<0.5	<0.5	0	108	102
MePerfluorooctanesulf- amid oacetic acid	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	99	104
EtPerfluorooctanesulf- amid oacetic acid	µg/L	0.002	Org-029	<0.002	1	<0.002	<0.002	0	101	98
Surrogate ¹³ C ₈ PFOS	%		Org-029	99	1	100	102	2	103	105
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	1	96	96	0	102	100

QUALITY CONTR	OL: PFAS in	Water LC	W LEVEL Extend			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	336033-2
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	50	1	85	82	4	58	81
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	76	1	86	85	1	84	87
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	69	1	90	88	2	71	91
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	91	1	51	52	2	101	41
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	78	1	87	91	4	82	91
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	81	1	95	87	9	90	92
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	85	1	91	88	3	88	92
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	100	1	129	128	1	105	127
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	86	1	109	104	5	91	108
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	90	1	126	121	4	97	133
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	85	1	136	132	3	93	139
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	86	1	141	137	3	95	136
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	65	1	123	115	7	72	113
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	105	1	195	176	10	119	195
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	142	1	#	#		148	#
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	183	1	#	#		#	#
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	72	1	87	87	0	72	83
Extracted ISTD d ₃ N MeFOSA	%		Org-029	114	1	110	105	5	114	103
Extracted ISTD d₅ N EtFOSA	%		Org-029	128	1	116	118	2	114	106
Extracted ISTD d7 N MeFOSE	%		Org-029	123	1	115	116	1	122	106

QUALITY CONTRO	DL: PFAS in	Water LO	W LEVEL Extend			Duplicate Spike Recover				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	336033-2
Extracted ISTD d ₉ N EtFOSE	%		Org-029	114	1	109	114	4	106	104
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	137	1	#	#		134	#
Extracted ISTD d₅ N EtFOSAA	%		Org-029	131	1	#	#		144	#

QUALITY CC	NTROL: All	metals in	water - total			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date prepared	-			25/10/2023	1	25/10/2023	25/10/2023		25/10/2023	
Date analysed	-			26/10/2023	1	26/10/2023	26/10/2023		26/10/2023	
Arsenic-Total	μg/L	1	Metals-022	<1	1	6	6	0	102	
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	107	
Boron-Total	µg/L	20	Metals-022	<20	1	1300	1300	0	109	
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	101	
Chromium-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	102	
Cobalt-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	104	
Copper-Total	µg/L	1	Metals-022	<1	1	3	3	0	100	
Lead-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	104	
Manganese-Total	µg/L	5	Metals-022	<5	1	9	10	11	102	
Mercury-Total	µg/L	0.05	Metals-021	<0.05	1	<0.05	[NT]		98	
Nickel-Total	µg/L	1	Metals-022	<1	1	6	5	18	105	
Selenium-Total	µg/L	1	Metals-022	<1	1	6	6	0	105	
Zinc-Total	µg/L	1	Metals-022	<1	1	3	3	0	104	

QUALITY CONTRO	OL: Metals ir	Waters	Acid extractable			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			25/10/2023	1	25/10/2023	25/10/2023		25/10/2023	[NT]
Date analysed	-			25/10/2023	1	25/10/2023	25/10/2023		25/10/2023	[NT]
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.05	<0.05	0	103	[NT]

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			24/10/2023	1	24/10/2023	24/10/2023		24/10/2023	
Date analysed	-			24/10/2023	1	24/10/2023	24/10/2023		24/10/2023	
рН	pH Units		Inorg-001	[NT]	1	8.5	[NT]		103	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	1	2900	[NT]		106	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	24	[NT]		93	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	1800	[NT]		92	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	101	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	2	24/10/2023	24/10/2023		[NT]	
Date analysed	-			[NT]	2	24/10/2023	24/10/2023		[NT]	
рН	pH Units		Inorg-001	[NT]	2	8.4	8.4	0	[NT]	
Electrical Conductivity	μS/cm	1	Inorg-002	[NT]	2	2800	2900	4	[NT]	
Total Suspended Solids	mg/L	5	Inorg-019	[NT]	2	16	[NT]		[NT]	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	[NT]	2	1800	[NT]		[NT]	
Phosphate as P in water	mg/L	0.005	Inorg-060	[NT]	2	<0.005	[NT]		[NT]	[NT]

Units -	PQL	Method	Blank	#	Base	Dum	000	100 1	
-					Dase	Dup.	RPD	LCS-1	[NT]
			25/10/2023	1	25/10/2023	25/10/2023		25/10/2023	
-			25/10/2023	1	25/10/2023	25/10/2023		25/10/2023	
mg/L	0.1	Inorg-062	<0.1	1	0.5	0.5	0	[NT]	
mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	101	
mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	101	
mg/L	0.005	Inorg-057	<0.005	1	0.008	0.009	12	98	
mg/L	0.1	Inorg-055/062/127	<0.1	1	0.5	0.5	0	96	
	mg/L mg/L mg/L mg/L	mg/L 0.1 mg/L 0.005 mg/L 0.005 mg/L 0.005	Img/L 0.1 Inorg-062 mg/L 0.005 Inorg-055 mg/L 0.005 Inorg-057	mg/L 0.1 Inorg-062 <0.1 mg/L 0.005 Inorg-055 <0.005	mg/L 0.1 Inorg-062 <0.1 1 mg/L 0.005 Inorg-055 <0.005	mg/L 0.11 Inorg-062 <0.1 1 0.5 mg/L 0.005 Inorg-055 <0.005	mg/L 0.005 Inorg-055 <0.005 1 <0.005 <0.005 mg/L 0.005 Inorg-055 <0.005	mg/L 0.10 Inorg-062 <0.1 1 0.5 0.5 0 mg/L 0.005 Inorg-055 <0.005	mg/L 0.005 Inorg-055 <0.005 1 <0.005 0.005 0 INT mg/L 0.005 Inorg-055 <0.005

Client Reference: 224764.00, Muswellbrook

QUAL	ITY CONTRC	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			24/10/2023	2	24/10/2023	24/10/2023		24/10/2023	
Date analysed	-			24/10/2023	2	24/10/2023	24/10/2023		24/10/2023	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	150	[NT]		104	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	21	[NT]		97	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	320	[NT]		104	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	2	99	[NT]		105	
Hardness	mgCaCO 3 /L	3	Metals-020	[NT]	2	780	[NT]		[NT]	
Hydroxide Alkalinity (OH $^{-}$) as CaCO $_{3}$	mg/L	5	Inorg-006	<5	2	<5	<5	0	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	2	140	150	7	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	2	13	14	7	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	2	150	160	6	104	
Sulphate, SO4	mg/L	1	Inorg-081	<1	2	820	[NT]		109	
Chloride, Cl	mg/L	1	Inorg-081	<1	2	440	[NT]		104	
Ionic Balance	%		Inorg-040	[NT]	2	-4.0	[NT]		[NT]	

Client Reference: 224764.00, Muswellbrook

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Client Reference: 224764.00, Muswellbrook

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

pH/Nutrients

Samples were out of the recommended holding time for this analysis.

Dissolved Metals: The preserved sample provided was not identified as either total or dissolved, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Total Metals: The preserved sample provided was not identified as either total or dissolved, therefore the analysis was conducted from the unpreserved sample. Note: there is a possibility some elements may be underestimated

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

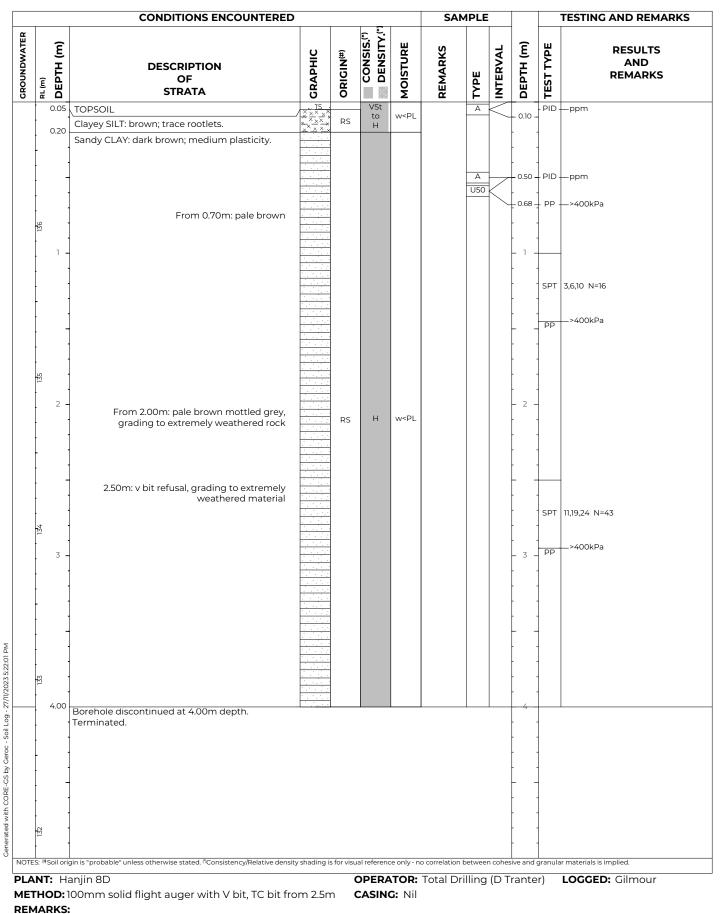
Appendix I

Borehole Logs

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 137.9 AHD **COORDINATE:** E:311993.3, N:6418611.2 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID:1 PROJECT No: 224764.00 DATE: 06/10/23 SHEET: 1 of 1



CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 136.8 AHD **COORDINATE:** E:311953.6, N:6418626.5 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID:2 PROJECT No: 224764.00 DATE: 25/09/23 SHEET: 1 of 1

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 135.7 AHD

BOREHOLE LOG

COORDINATE: E:311940.9, N:6418600.6 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:3 **DATE:** 29/09/23 SHEET: 1 of 3

			CON	IDITIO				ERE	U						SA	MPL	E			TESTING
						SOIL	-				ROC	:K								
	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	M M TH TH STRENGTH	RECOVERY (%)	RQD	ERACTURE	DEFECTS &	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
-		0.05	TOPSOIL	<u>TS</u>	-	-				Ľ.L.II.KI				1		-			-	
	135		Silty CLAY (CI): brown; medium plasticity coom-0:10m: trace rootlets		RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U50</td><td></td><td>- 0.50 -</td><td>- - - - PP -</td><td>—>400kPa</td></pl<>									U50		- 0.50 -	- - - - PP -	—>400kPa
-]	-			VSt	w=PL to w>PL											- 1 - - · ·	SPT	4,5,9 N=14 —350kPa
-	134	1.70 2	Silty CLAY (CI): brown mottled grey and orange; medium plasticity.															- 2 -	-	
	133	3.25			XWM	H Fr	w <pl< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td>17,21,25/100 Ref —>400kPa</td></pl<>			0									SPT	17,21,25/100 Ref —>400kPa
	132	4	SILTSTONE: brown with orange brown; iron staining					HW to XW		VL	100	0							-	_PL(I)=0.06М _PL(I)=0.04М
-	131		igin is "probable" unless otherwise stated.				not i f							325-6	20m:FC					

PLANT: Hanjin 8D

METHOD: Solid flight auger to 3.25, NMLC to 10.3m depth **REMARKS:**

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin CASING: HWT to 3.2m

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 135.7 AHD

BOREHOLE LOG

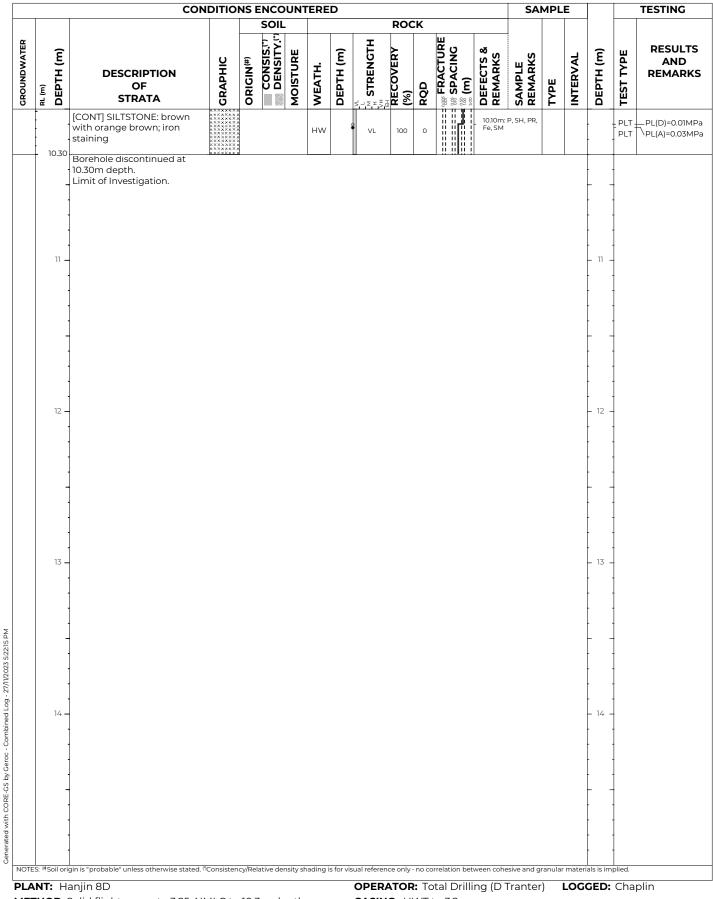
COORDINATE: E:311940.9, N:6418600.6 PROJECT No: 224764.00 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:3 DATE: 29/09/23 SHEET: 2 of 3

			CON			SOI		ERE	U		ROC	к				SA	MPL		-		TESTING
		(u)		맞	(#)	CONSIS. ⁽¹⁾		Ŧ	(E)	STRENGTH					TS & RKS	.Е ЖS		/AL	(E)	ТҮРЕ	RESULTS AND
	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	DOC	MOISTURE	WEATH.	DEPTH (m)	ZTRE STRE	RECOVERY (%)	RQD	SPA(E	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST T	REMARK
	-		[CONT] SILTSTONE: brown with orange brown; iron staining								100	0							-	-	
		-	-					HW to XW		VL									- -	- - - PLT -	
		6 -																	- 6 -	-	
								HW SEAM	- 6.20 - - 6.25 - - 6.29 -	L SEAM	- 100	11	SEAM) > 6.25-6.29	m: CS			-	-	
		-						нw	6.60 _	L						, SH, PR,				- PLT -	—PL(I)=0.1MPa
	671								5.05	VL									-	⁼ PLT ₌ PLT	PL(A)=0.07M ∖PL(D)=0.06M
	-	7 -						SEAM	- 6.96 -	SEAM			SEAN		6.96-727 clay sea contains	m			- 7 -	-	
								HW	-7.27 -	VL SEAM			SEAN	11	} → 7.47-7.5	8m C S				PLT = PLT	–PL(A)=0.02M √PL(D)=0.03M
	128								- 7.58 -]	T/45°, PR,			-	-	
	-	8 -						нw		VL to L						P, SH, PR,			- 8 -	-	
								seam HW	- 8.35 - - 8.41 -	SEAM	100	0	SEAN	1	8.17m: F Fe, SM				-	₽LT PLT PLT	PL(D)=0.07M \PL(A)=0.11MF
	. 471	-	-					SEAM HW SEAM	- 8:51 - - 8:57 -	SEAM vi vi SEAM			SEAM		> 8.48-85 > 8.57-860 - 8.73m J Fe, SM					-	
	-	9 -			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										8.84m: I Fe, SM \8.92m J Fe, SM 9.05m: J Fe, SM \9.09m J	P, SH, PR, T/60°, PR, T/75°, PR, T/45°, PR,			- - - 9 -		
			-		ć x			нw		[₽] vL					Fe, RF 9.25m J Fe, SM 9.27m: J Fe, SM 9.36-9.4	T/15°, PR,			-		—PL(D)=0.19M ∖PL(A)=0.19MI
	126										100	0							-	-	
TF	- c. 曲c	Soil or	gin is "probable" unless otherwise stated. ⁽¹⁾	Conciet/		lative de	onsity ch	hading	s for vice	ual referen	ce only				woon coho	sive and a	ranular	matari	ale ie im	nlied	

METHOD: Solid flight auger to 3.25, NMLC to 10.3m depth **REMARKS:**

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin CASING: HWT to 3.2m


PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW SURFACE LEVEL: 135.7 AHD

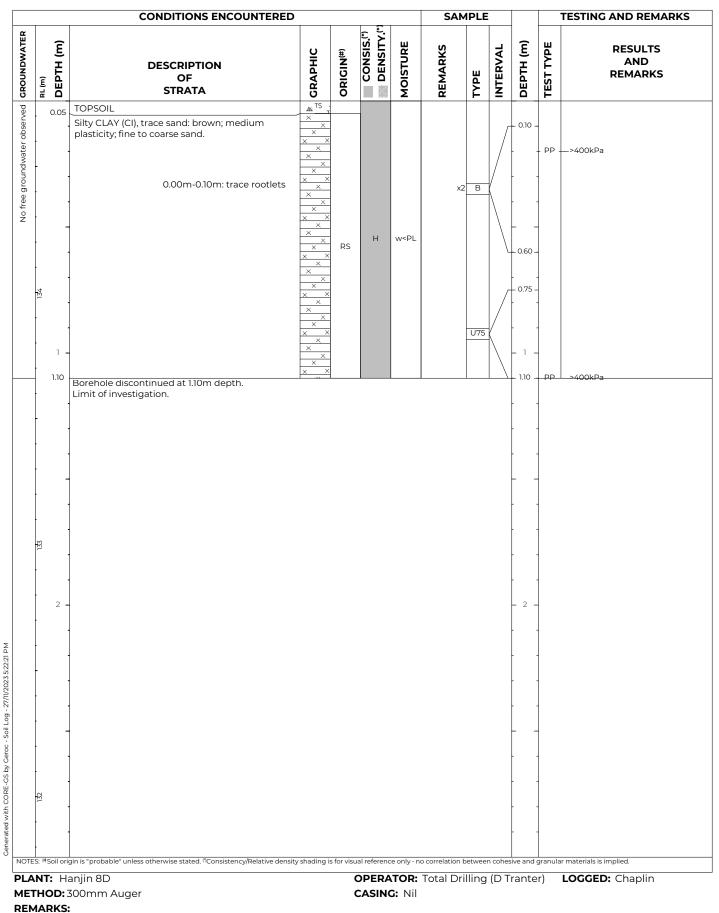
BOREHOLE LOG

COORDINATE: E:311940.9, N:6418600.6 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:3

DATE: 29/09/23 SHEET: 3 of 3

METHOD: Solid flight auger to 3.25, NMLC to 10.3m depth **REMARKS:**


CASING: HWT to 3.2m

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 134.8 AHD **COORDINATE:** E:311931.3, N:6418569.2 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 4 PROJECT No: 224764.00 DATE: 06/10/23 SHEET: 1 of 1

SURFACE LEVEL: COORDINATE: DATUM/GRID:

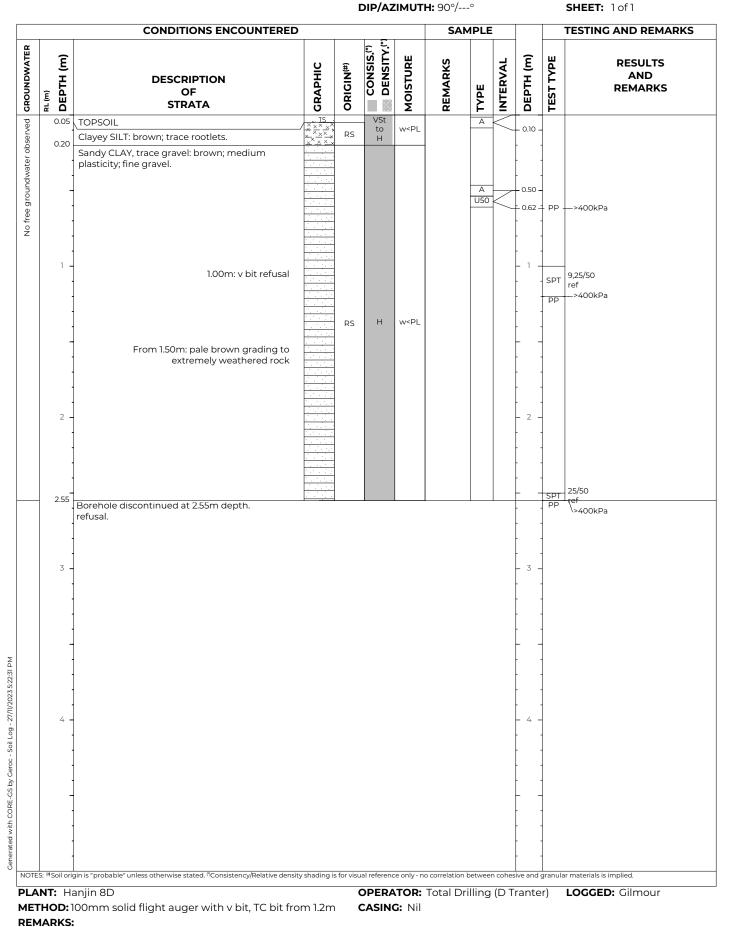
LOCATION ID:5 **PROJECT No: 224764.00 DATE:** 27/09/23 SHEET: 1 of 1

CONDITIONS ENCOUNTERED SAMPLE **TESTING AND REMARKS** CONSIS.^(*) No free groundwater observed GROUNDWATER Ē **FEST TYPE** MOISTURE DEPTH (m) RESULTS REMARKS INTERVAL **GRAPHIC** WELL PIPE AND DEPTH (DESCRIPTION BACKFILL ТҮРЕ REMARKS OF RL (m) STRATA 0.05 TOPSOIL 0.10 Clayey SILT, trace gravel: brown; fine gravel; rootlets. В w<PL н RS <u>× ×</u> 2 0.50 0.60 0.60 Sandy CLAY, trace gravel: brown; medium Α plasticity; fine to medium sand; fine gravel. A/U50 DD -->400kPa 1 From 1.00m: grey mottling grading into extremely weathered sandstone SPT 8,12,12 N=24 >400kPa DD w<PL RS Н 2 2 11,25/50 SPT refusal \>400kPa 2.70 PF Borehole discontinued at 2.70m depth. 3 3 Generated with CORE-GS by Geroc - Soil Log - 27/11/2023 5:22:26 PM 4 4 NOTES: #Soil origin is "probable" unless otherwise stated. "Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied. PLANT: Hanjin 8D **OPERATOR:** Total Drilling (D Tranter) LOGGED: Gilmour METHOD: 100mm solid flight auger with TC bit CASING: Nil **REMARKS:**

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

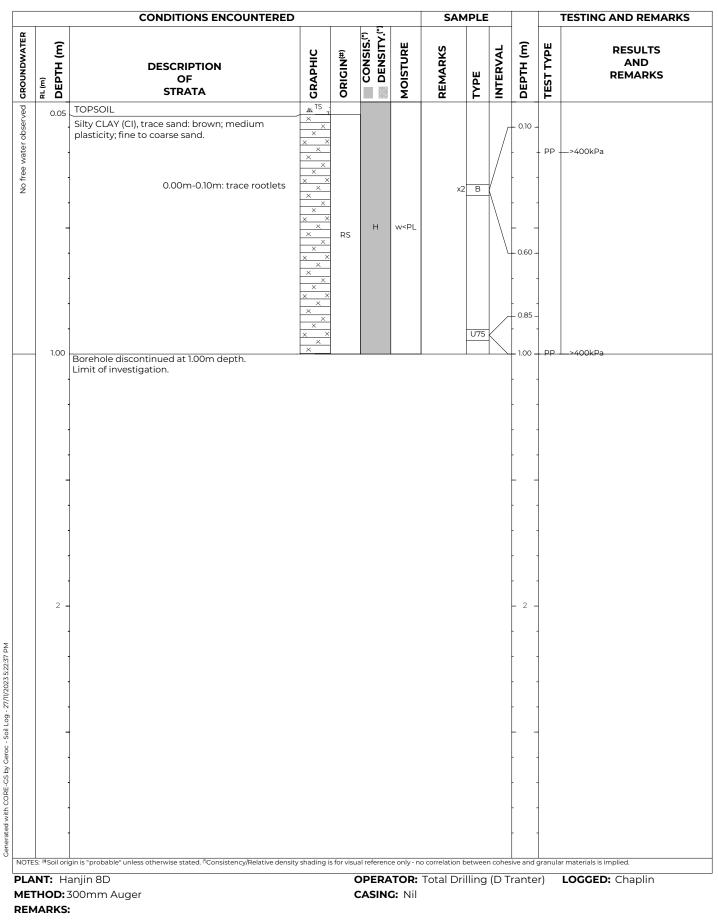
DIP/AZIMUTH: 90°/---°


CLIENT:

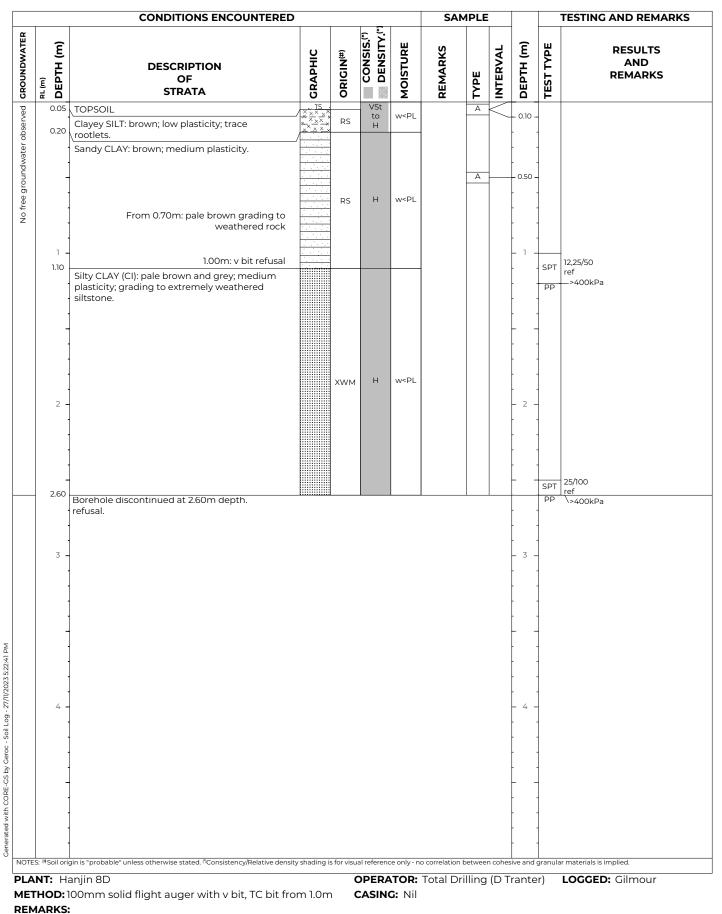
Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation

LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

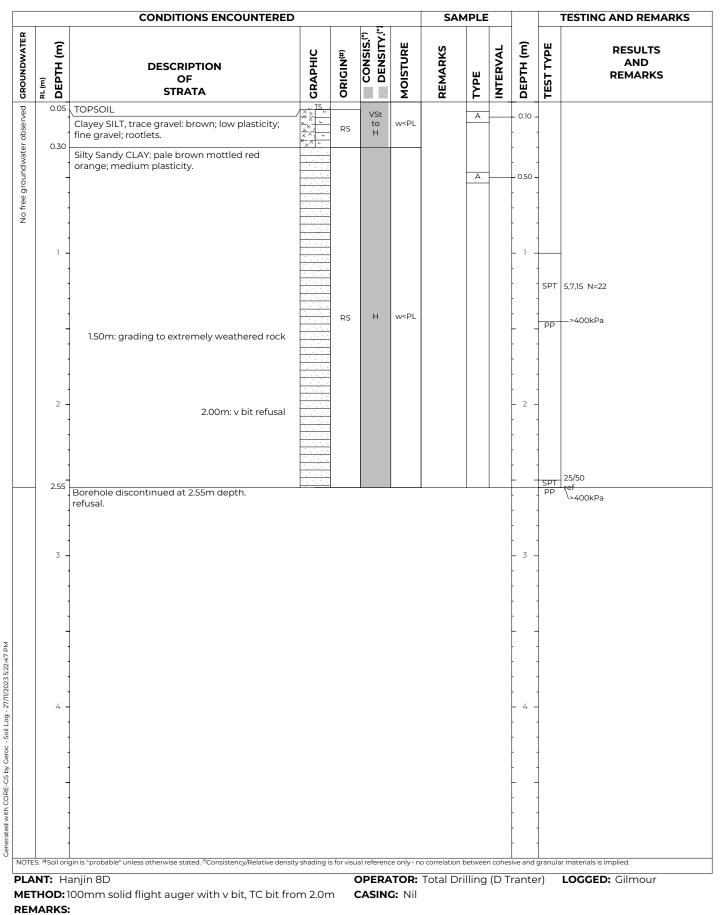

SURFACE LEVEL: COORDINATE: DATUM/GRID: LOCATION ID: 6 PROJECT No: 224764.00 DATE: 27/09/23 SHEET: 1 of 1

Refer to explanatory notes for symbol and abbreviation definitions


SURFACE LEVEL: COORDINATE: LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW DATUM/GRID: DIP/AZIMUTH: 90°/---° LOCATION ID:7 **PROJECT No: 224764.00 DATE:** 06/10/23 SHEET: 1 of 1

PROJECT: New Eastern Hub Sub-Transmission Substation

SURFACE LEVEL: COORDINATE: DATUM/GRID: DIP/AZIMUTH: 90°/---° LOCATION ID:8 **PROJECT No: 224764.00 DATE:** 25/09/23 SHEET: 1 of 1

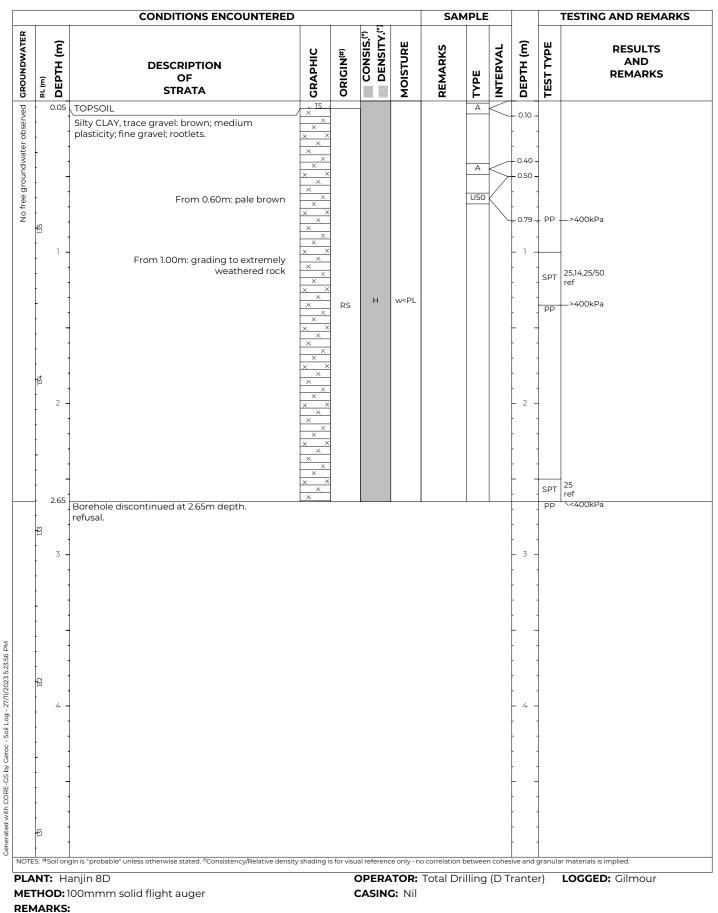


Refer to explanatory notes for symbol and abbreviation definitions

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: COORDINATE: DATUM/GRID: DIP/AZIMUTH: 90°/---° LOCATION ID:9 **PROJECT No: 224764.00 DATE:** 25/09/23 SHEET: 1 of 1

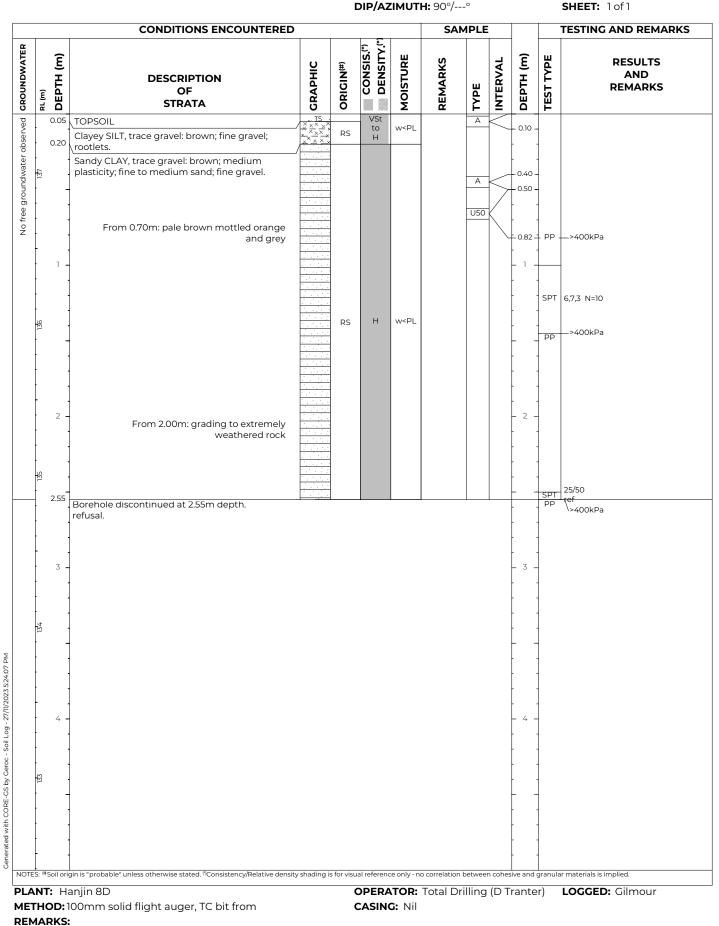

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 135.8 AHD **COORDINATE:** E:312028.9, N:6418515.1 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 10 PROJECT No: 224764.00 DATE: 25/09/23 SHEET: 1 of 1

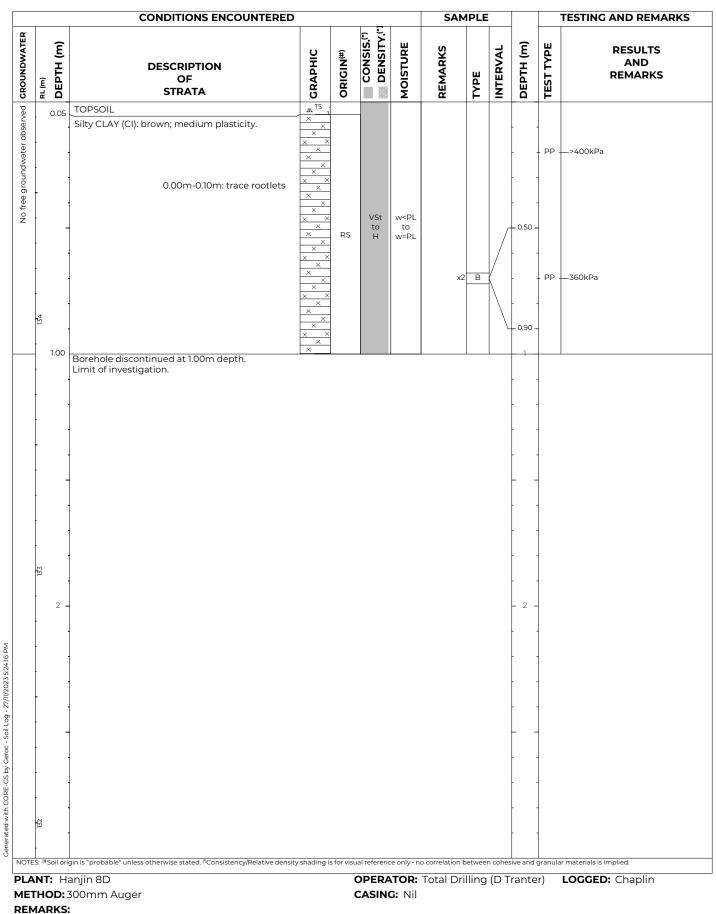


CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 137.4 AHD COORDINATE: E:312047.6, N:6418548.8 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56

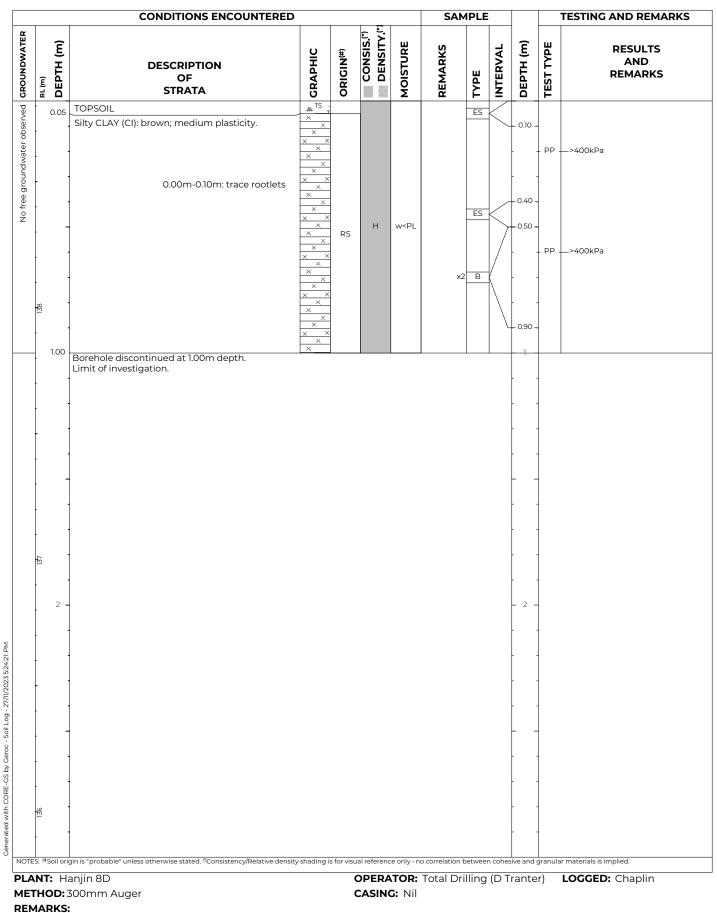
LOCATION ID:11 **DATE:** 25/09/23 SHEET: 1 of 1



CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

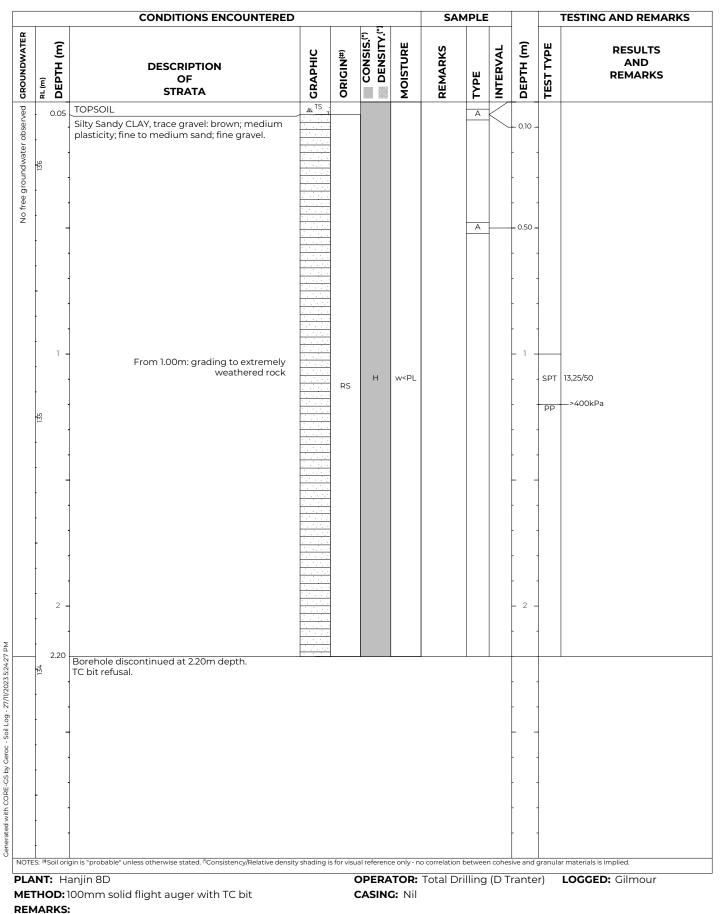
SURFACE LEVEL: 134.9 AHD **COORDINATE:** E:311918.1, N:6418609.7 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID:12 PROJECT No: 224764.00 DATE: 29/09/23 SHEET: 1 of 1



CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 138.8 AHD **COORDINATE:** E:312101.9, N:6418614.6 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID:13 PROJECT No: 224764.00 DATE: 29/09/23 SHEET: 1 of 1



CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 136.3 AHD COORDINATE: E:312055.8, N:6418520.6 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 14 **DATE:** 26/09/23 SHEET: 1 of 1

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 137.5 AHD COORDINATE: E:312068.2, N:6418552.3 PROJECT No: 224764.00

DIP/AZIMUTH: 90°/---°

LOCATION ID:15 DATE: 26/09/23 SHEET: 1 of 1

			, 		<u> </u>		JAN	/PLE			<u> </u>	TESTING AND REMARKS
	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
T	0.05		J# T5 T					A	K			
ļ		Silty Sandy CLAY, with gravel: brown-dark brown; low plasticity; fine to medium sand; fine								- 0.10 -	-	
		to coarse, (natural) gravel.								-		
İ		From 0.20m: brown, trace fine to coarse gravels										
ł		1								-	1	
		-								-	-	
								A		- 0.50 -		
14	i								1			
ł		1								-	-	
		From 0.70m: pale brown, grading into								-	-	
Ī		extremely weathered rock										
ł												
ļ		1							'	-	1	
	1	-								- 1 -		-
Ī												
ł]								-	1	
ļ		-								-	SPT	7,13,12 N=25
										-		
ł				RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pl<>						
ł		1								-		>400kPa
126	,	-									PP	
12	2									_		
ł												
ł		1								-	1	
		-								-	-	
										_		
ł												
ł	2	-								- 2 -		
		-								-	-	
										_		
ł												
ļ		1								-	-	
		-								-	-	
ĺ												
175	2										SPT	25
ļ	2.65	1								-	-	ref >400kPa
	2.00	Borehole discontinued at 2.65m depth. refusal.									PP	
ſ												
ł											1	
ļ		1								-	1	
F¢	(#Soil or	igin is "probable" unless otherwise stated. "Consistency/Relative densi	v shading i	s for view	al referen	e only - pr	correlation	hetwee	n cohec	ive and	grapula	ar materials is implied
		anjin 8D	., snaamig I:				Total Dr					LOGGED: Gilmour

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 138.0 AHD COORDINATE: E:312076.1, N:6418566.1 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:16 **DATE:** 26/09/23 SHEET: 1 of 1

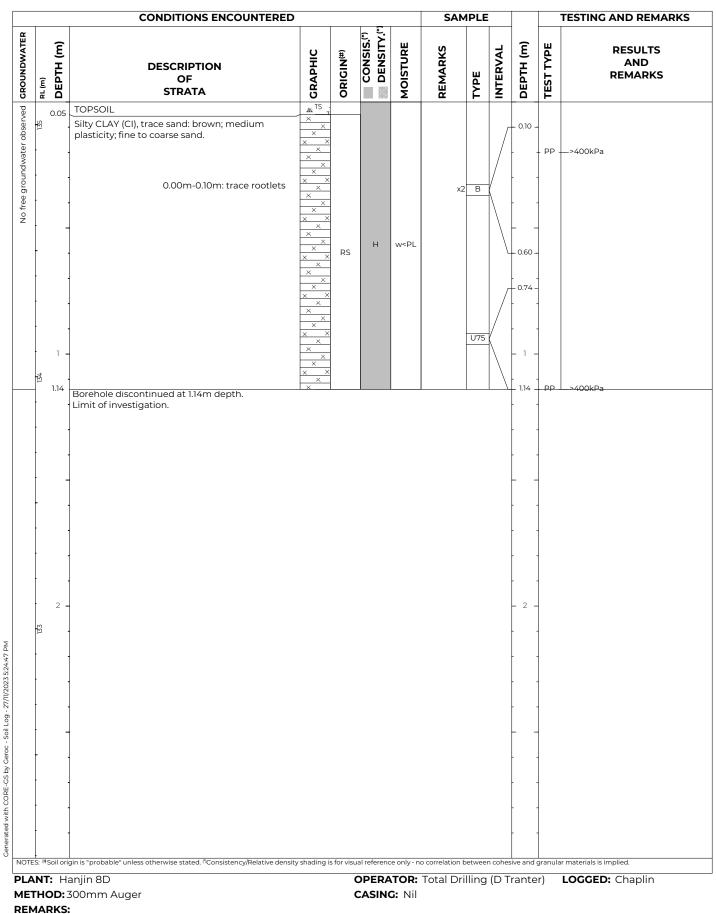
						Υ.C					_		
		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
1	2	0.05	TOPSOIL Sandy CLAY, with gravel: brown; medium	<u>ж</u> т5 т		-			A	<	0.10		
-		-	plasticity; fine to medium sand; fine to coarse gravel; trace rootlets.								0.10 - - -	-	
-		_							A U50		- - 0.50 - -	-	
		-	From 0.70m: pale brown, grading into extremely weathered rock								- - 0.82 - -	PP .	—>400kPa
	15/	1 -	1.00m: V bit refusal								- 1 -		
ļ		-										- SPT	9,25/50 ref
		1										PP	>400kPa
-											-	-	
					RS	Н	w <pl< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td></pl<>				-	-	
-		-										-	
ł		Ī									-	-	
ł		Ī									-		
ł													
ļ	0	2 -									- 2 -		
140	5	-										_	
		-									-	-	
ļ		-									-	-	
		-									-	-	
-		-											-
ļ		-										- SPT	11,25/50 ref
		-									-		_
-		2.80	Borehole discontinued at 2.80m depth. refusal.									PP.	>400kPa
											-	1	
ES:	: #S	ioil orig	jin is "probable" unless otherwise stated. ⁽¹⁾ Consistency/Relative densit	y shading is				correlation					ar materials is implied.

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 137.0 AHD COORDINATE: E:312100.3, N:6418552.3 PROJECT No: 224764.00 **DIP/AZIMUTH:** 90°/---°

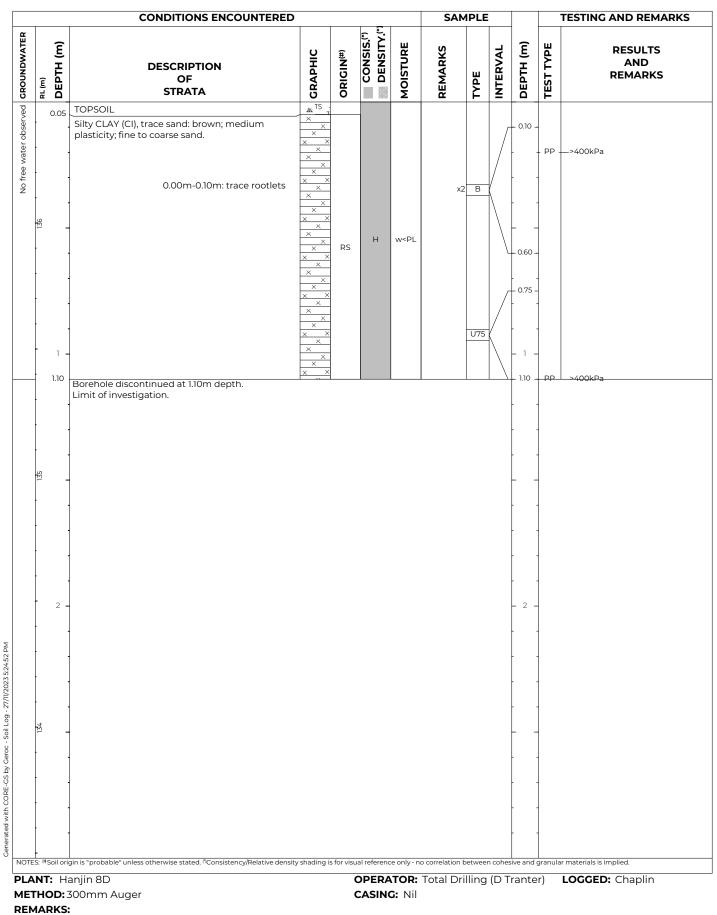
LOCATION ID: 17 DATE: 26/09/23 SHEET: 1 of 1


-		CONDITIONS ENCOUNTERED			F		SAN	IPLE				TESTING AND REMARK
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
-	0.05	TOPSOIL Silty Sandy CLAY, trace gravel: brown-dark brown; medium plasticity; fine to medium sand; fine gravel.			-			A		- 0.10 -		
-	-			RS	н	w <pl< td=""><td></td><td>A</td><td>-</td><td>- 0.50 -</td><td></td><td></td></pl<>		A	-	- 0.50 -		
-	0.80	Sandy CLAY, trace gravel: brown-pale brown mottled grey-orange; medium plasticity; fine										
136	1 -	to medium sand; fine gravel.								- 1 -	SPT	8,12,14 N=26
-	-										PP	>400kPa
-				RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td>- -</td><td></td></pl<>					- -	
. 135	2 -	2.00m: grading to extremely weathered rock								- 2 -		
-												
-	2.70	Borehole discontinued at 2.70m depth. refusal.									SPT	9,25 ref >>400kPa
		gin is "probable" unless otherwise stated. "Consistency/Relative densit	y shading is				o correlation I					ar materials is implied.

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 135.1 AHD **COORDINATE:** E:312167.8, N:6418532.5 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID:18 PROJECT No: 224764.00 DATE: 06/10/23 SHEET: 1 of 1



CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 136.5 AHD **COORDINATE:** E:312128.7, N:6418553.2 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 19 PROJECT No: 224764.00 DATE: 06/10/23 SHEET: 1 of 1

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 135.4 AHD

BOREHOLE LOG

COORDINATE: E:312143.6, N:6418527.0 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

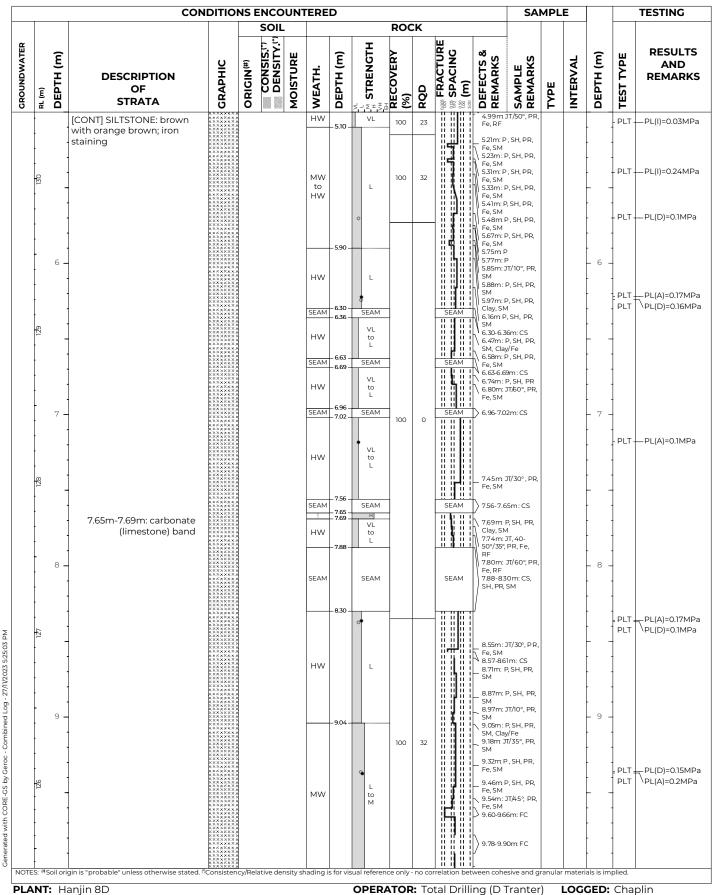
LOCATION ID: 20 **DATE:** 28/09/23 SHEET: 1 of 3

			CON	DITIO	NS E	NCC	UNT	ERE	D						SA	MPL	E			TESTING
						SOIL					ROO	CK								
GROUNDWATER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)		RECOVERY (%)	RQD	SPACINE SPACING SPACING (m)	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
		0.05	TOPSOIL	<u>TS</u>		-				L.I.I.I.K						D	<	- 0.10 -		
No free groundwater observed	135		Silty CLAY (CI): brown; medium plasticity. 0.00m-0.30m: trace rootlets			н	w <pl< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D U50</td><td></td><td>- 0.40 - - 0.40 - - 0.50 - - 0.68 -</td><td>- PP -</td><td>>400kPa</td></pl<>	-								D U50		- 0.40 - - 0.40 - - 0.50 - - 0.68 -	- PP -	>400kPa
	134	1 -	-		RS	VSt to H	w=PL											- 1 - 	SPT PP	6,9,15 N=15 —380-400kPa
	131	2.00	Silty CLAY (CI): pale brown mottled orange and grey; medium plasticity.		XWM		w <pl< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 2 -</td><td></td><td></td></pl<>	-										- 2 -		
		3.04	SILTSTONE: brown with orange brown; iron staining			Fr		HW SEAM HW SEAM		VL SEAM VL SEAM			SEAM	3.33-3.	'2m : CS 44m: CS				SPT	16,17,22 N=39 —>400kPa
		4 -	-					SEAM MW to	7.52	SEAM	100	23		3.80m Clay, S \3.87m: SM 3.94-4	: P, SH, PR, : P, SH, PR, M : P, SH, PR, .04m: FC			 	- PLT -	— PL(I)=0.16MPa
	· · · · ¹⁵¹ · · ·		- - - - - - -					нw	- 4.54 -	VL VL				RF 4.19m: Clay, S 4.27m SM 4.30m Clay, S 4.44m Fe, SM 4.46m Clay, S	: JT/50°, PR, (P, SH, PR, M : P, SH, PR, : P, SH, PR, M			 	-	— PL(I)=0.16MPa — PL(A)=0.05MPa
NO	FES: ®	#Soil or	gin is "probable" unless otherwise stated.	*****	××× ××× ×××	***	***	***	XXX XXX XXX XXX XXX XXX XXX XXX XXX XX						889 I I I I I I I I I I I I I I I I I I	889 I I I I I I I I I I I I I I I I I I	889 I I I I I I I I I I I I I I I I I I			HW VL Clay, SM - PLT - Clay, SM - PR, PLT - 4.90m; JT/50°, PR,

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) LOGGED: Chaplin

METHOD: Solid Flight Auger to 3.04m, then NMLC to 10.3m depth CASINC: HWT to 2.5m **REMARKS:**



PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 135.4 AHD

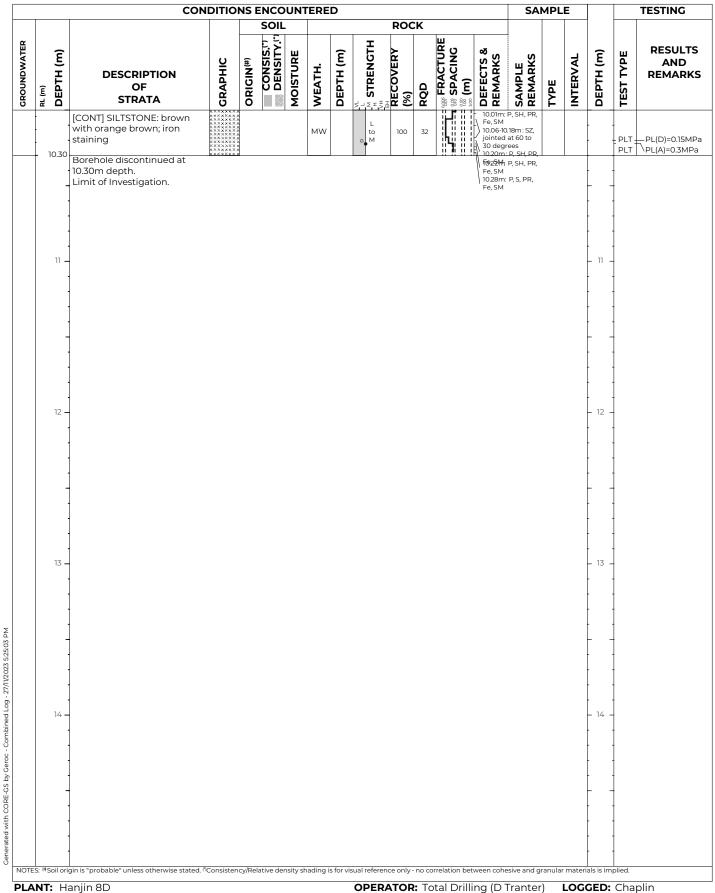
BOREHOLE LOG

COORDINATE: E:312143.6, N:6418527.0 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 20 PROJECT No: 224764.00 DATE: 28/09/23 SHEET: 2 of 3

 PLANT:
 Hanjin 8D
 OPERATOR:
 Total Drilling (D Tranter)

 METHOD:
 Solid Flight Auger to 3.04m, then NMLC to 10.3m depth
 CASING:
 HWT to 2.5m

 REMARKS:
 Comparison of the second sec


CLIENT: Ausgrid PROJECT: New Eastern Hub Sub-Transmission Substation

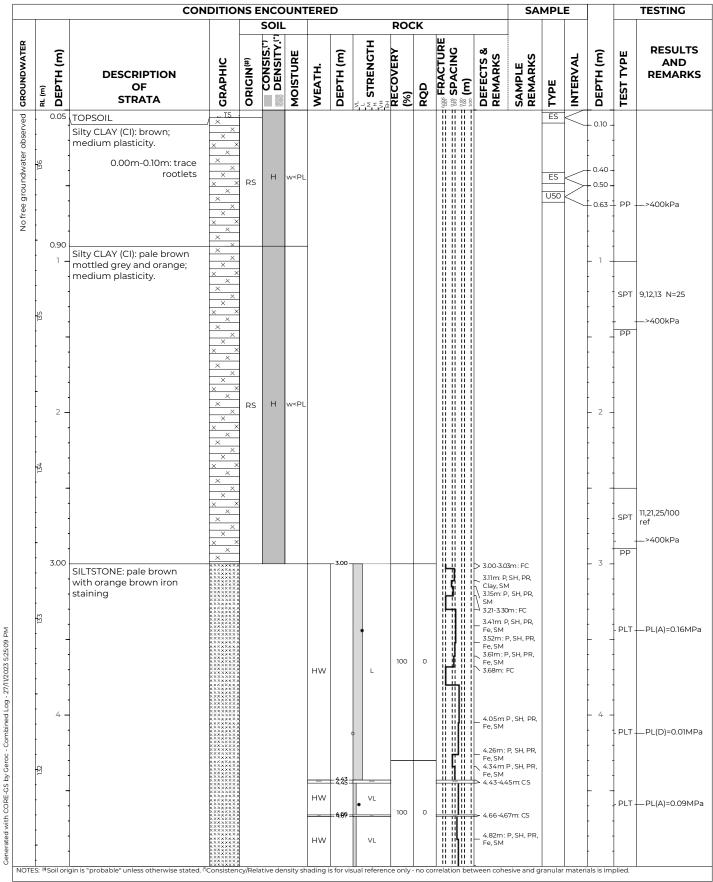
LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 135.4 AHD

BOREHOLE LOG

COORDINATE: E:312143.6, N:6418527.0 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID:20 PROJECT No: 224764.00 DATE: 28/09/23 SHEET: 3 of 3

METHOD: Solid Flight Auger to 3.04m, then NMLC to 10.3m depth **CASINC:** HWT to 2.5m **REMARKS:**



PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 136.4 AHD

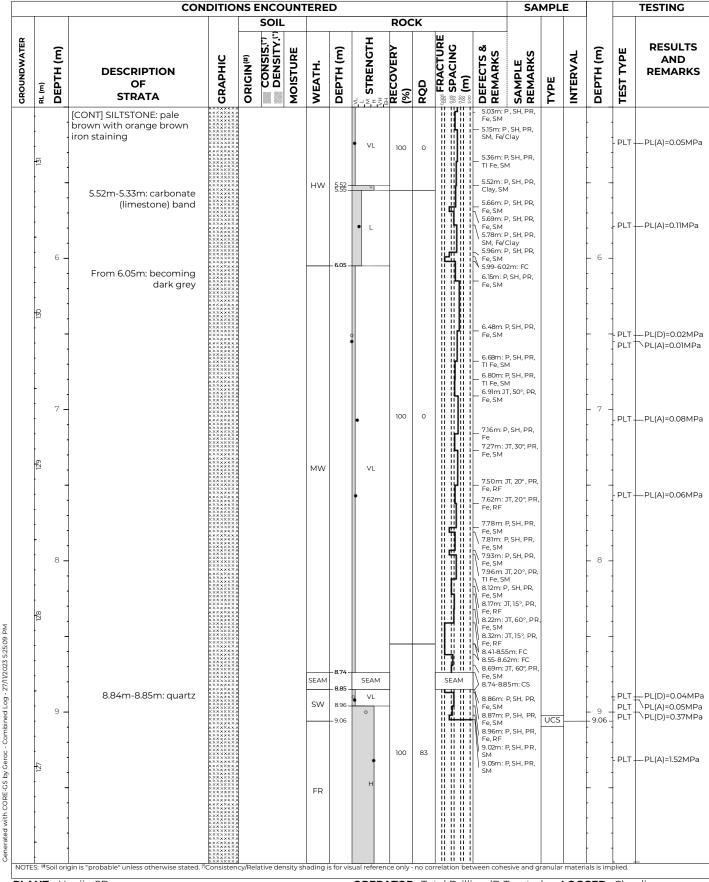
BOREHOLE LOG

COORDINATE: E:312117.3, N:6418543.9 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 21 PROJECT No: 224764.00 DATE: 03/10/23 SHEET: 1 of 5

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin

METHOD: Solid flight auger to 3.0m, then NMLC to 20.74m depth CASING: HWT to 2.5m REMARKS:



PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 136.4 AHD

BOREHOLE LOG

COORDINATE: E:312117.3, N:6418543.9 DATUM/GRID: MGA2020 Zone 56 DIP/AZIMUTH: 90°/---° LOCATION ID: 21 PROJECT No: 224764.00 DATE: 03/10/23 SHEET: 2 of 5

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin

METHOD: Solid flight auger to 3.0m, then NMLC to 20.74m depth CASING: HWT to 2.5m REMARKS:

CLIENT: Ausgrid **PROJECT:** New Eastern Hub Sub-Transmission Substation

LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 136.4 AHD COORDINATE: E:312117.3, N:6418543.9 **PROJECT No:** 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 21 **DATE:** 03/10/23 **SHEET:** 3 of 5

			CON	IDITIO	NS			FERE	D								SA	MPL	E	1		TESTING
						SOIL	-					ROC	κ									
	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	R STRENGTH	CH EH	KELUVERT (%)	RQD	E SPACING	⁰⁰⁰ ²⁰⁰ (m)	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARK
_			[CONT] SILTSTONE: pale brown with orange brown	× × × × × × × × × × × × × × × × × × ×																	- PLT -	PL(A)=1.37MF
			iron staining	******											H H							
	126	-		*******																		
				*******	*										11 11							
				*******											!!							
		-		******											H H							
	-	-		******								100	83									
		11 _		******											H H					- 11 -	ыт	
	•			*******											H 1							PL(A)-1.37MI
		-		******																		
	125	-		××××××× ××××××× ××××××× ×××××××																		
		-		******																L _		
		-		××××××× ××××××× ××××××× ×××××××							-											
		-		******											H H							
	-	-		*******											H 1							
		12 -													:: ::					- 12 -		
				x > > x x x x x x x x x x x x x x x x > > x x x x																		
		-		******																		
	124	•		x x x x x x x x x x x x x x x x x x x						•					H H			UCS		- 12.35 -	PLT -	
		_		******				FR		н					# #							
				******											H 1							

	-	-		*******											H 1							
		13 -		******											H 1					- 13 -		
		-		××××××× ××××××× ××××××× ××××××××								100	100									
		-		*******											::::							
	123			*******											H 1					[
		_		******											11 H							
		-		×××××××× ××××××× ×××××××× ××××××××											11 H							
		-		******											H 1							
	-			××××××× ××××××× ×××××××											# #							
		14 -		******						•					H H					- 14 -	PLT -	PL(A)=1.29M
		-		******											# #							
		-		******											!!							
	<u>1</u> 2			******											H H					[]		
		_									-				H 1							
		-		******																		
		-		******								100	100		11 11							
	_	-													!!							
			gin is "probable" unless otherwise stated. ⁽	XXXXXXX	×										11 H							

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) LOGGED: Chaplin

METHOD: Solid flight auger to 3.0m, then NMLC to 20.74m depth CASING: HWT to 2.5m **REMARKS:**

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

BOREHOLE LOG SURFACE LEVEL: 136.4 AHD

COORDINATE: E:312117.3, N:6418543.9 **PROJECT No:** 224764.00 **DIP/AZIMUTH:** 90°/---°

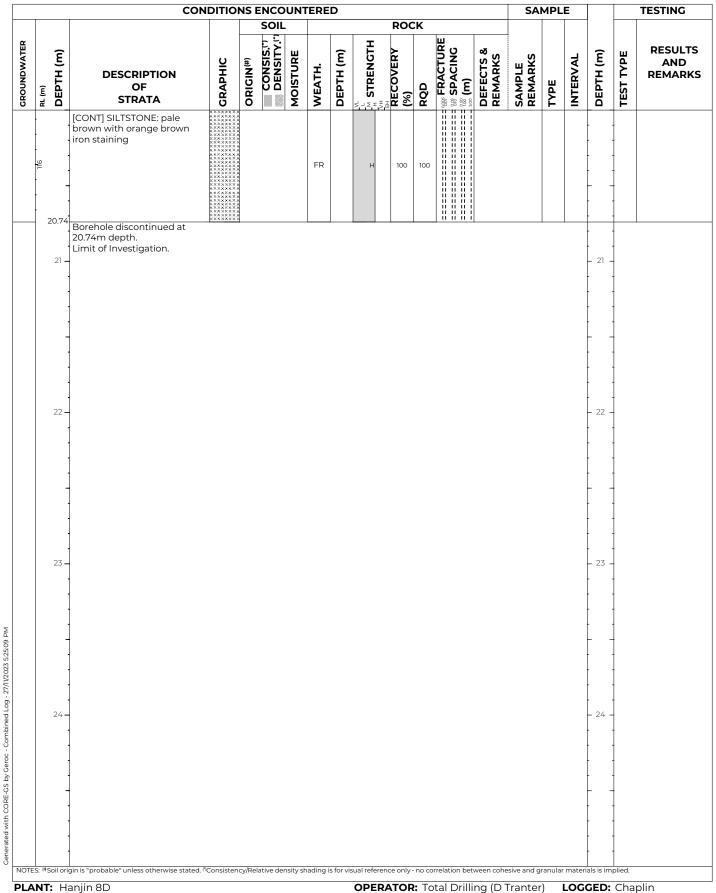
LOCATION ID: 21 **DATE:** 03/10/23 **SHEET:** 4 of 5

			CON	IDITIO	NS			ERE	J							SA	MPL	E		L,	TESTING
						SOIL			-			ROC	:К		1						
GROUNDWAIER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)			RECOVERY (%)	RQD	(m)	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT: AND REMARK
	۲Ż۱		[CONT] SILTSTONE: pale brown with orange brown iron staining									100	100			2				-	
-		- 16 — - -			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					•									- 16 - 	- - PLT - - -	—PL(A)=1.17MF
-		- 17 — -						FR			•	100	100						- 17 -	- - - - -	—PL(A)=2.07M
-			18.08m-18.22m: grey fine grained sandstone					FK											- 18 -	· - - -	
-	8µ	- - - - - - - - - - - - - - - - 										100	100							-	
-	411	• • • • •			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~														- · ·	-	

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin

METHOD: Solid flight auger to 3.0m, then NMLC to 20.74m depth CASINC: HWT to 2.5m **REMARKS:**


CLIENT: Ausgrid PROJECT: New Eastern Hub Sub-Transmission Substation

LOCATION: Lot 9 DP1193430 Hebden Road, Musewilbrook, NSW

BOREHOLE LOG SURFACE LEVEL: 136.4 AHD COORDINATE: E:312117.3, N:6418543.9 WIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID:21 PROJECT No: 224764.00 DATE: 03/10/23 SHEET: 5 of 5

METHOD: Solid flight auger to 3.0m, then NMLC to 20.74m depth **CASING:** HWT to 2.5m **REMARKS:**

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 134.0 AHD COORDINATE: E:311956.3, N:6418499.2 **PROJECT No:** 224764.00 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:22 DATE: 29/09/23 SHEET: 1 of 2

_			CONDITIONS ENCOUNTERED					SAN	1PLE		-		
DI (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.	.05	TOPSOIL Silty CLAY (CL): brown; low plasticity.	<u>₩</u> ^{T5} × × × ×	RS	н	w <pl< td=""><td></td><td>D/ES</td><td>K</td><td>- 0.10 -</td><td></td><td></td></pl<>		D/ES	K	- 0.10 -		
-	0.	.20 -	Silty CLAY (CI): brown; medium plasticity.	× × × × × × × × × × × × × × × × × × ×	RS	н	w <pl< td=""><td></td><td>D/ES U50</td><td></td><td>- 0.40 - - 0.50 -</td><td></td><td>—>400kPa —>400kPa</td></pl<>		D/ES U50		- 0.40 - - 0.50 -		—>400kPa —>400kPa
. 133	Ŀ	- 00	Silty CLAY (CI): brown mottled grey and orange; medium plasticity.								- 0.75 - - 1 -	-	
-		-		× × × × × × × × × × × × × × × × × × ×								PP	7,10,14 N=25 —>400kPa
		-		× × × × × × × × × × × × × × × × × × ×	ХWМ	H to Fr	w <pl< td=""><td></td><td></td><td></td><td>- 2 -</td><td>-</td><td></td></pl<>				- 2 -	-	
· · ·		-										SPT	
AN	T:	Ha	in is "probable" unless otherwise stated. "Consistency/Relative density anjin 8D Solid flight auger (TC)	s lauing is	c	PERA		Total Dri					LOGGED: Chaplin

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 134.0 AHD COORDINATE: E:311956.3, N:6418499.2 **PROJECT No:** 224764.00 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:22 DATE: 29/09/23 SHEET: 2 of 2

	CONDITIONS ENCOUNTERED								SAMPLE					TESTING AND REMARKS
GROUNDWATER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)			MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	-		[CONT] Silty CLAY (CI): brown mottled grey and orange; medium plasticity. 3.50m: increased drill resistance, indicative of rock		хwм	H tc Fi		w <pl< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td></pl<>					-	
	-	3.50	Borehole discontinued at 3.50m depth. TC refusal.				1	I					-	
	. 130	4 -										- 4 -	-	
	-												•	
	-												-	
	671	5 -										- 5 -	-	
	-	- -											-	
												- ·	-	
PLA		Г: Н ОD: 9	 gin is "probable" unless otherwise stated. "Consistency/Relative densit anjin 8D Solid flight auger (TC)	y shading is	c	DPE	RA		correlation b					ar materials is implied. LOGGED: Chaplin

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 136.5 AHD COORDINATE: E:312091.8, N:6418532.8 PROJECT No: 224764.00 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:23 DATE: SHEET: 1 of 1

		CONDITIONS ENCOUNTERED			£ 5.		541	MPLE				TESTING AND REMARK
DI (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.05	TOPSOIL	<u>₩</u> 15 . ×××××					A	\langle			
		Clayey SILT, trace gravel: brown; low plasticity; trace rootlets.	××××××××××××××××××××××××××××××××××××××	RS	н	w <pl< td=""><td></td><td></td><td></td><td>- 0.10 -</td><td>-</td><td></td></pl<>				- 0.10 -	-	
	0.40	Silty Sandy CLAY, trace gravel: brown-dark	× ×								ł	
136	-	brown; medium plasticity; fine to medium sand; fine gravel.						A	-	- 0.50 -		
ĺ		-						U50				
		-							$\left \right\rangle$		-	
										- 0.77 -	PP -	>400kPa
		From 0.90m: pale brown mottled orange									1	
	1 -	-								- 1 -		
•		-									-	
											CDT	
											SPI	5,7,7 N=14
											1	
												>400kPa
135	-	-									PP	
				RS	Н	w <pl< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td></pl<>					-	
		-									1	
ŀ		-									-	
-	2 -	-								- 2 -	ł	
											ł	
											-	
											ł	
134	_											
ľ												
											SPT	12,25/50
	2.70	Borehole discontinued at 2.70m depth.									PP	->400kPa
		-										
. 5:	#Soil ori	gin is "probable" unless otherwise stated. "Consistency/Relative densit	y shading is	s for visu	ial referen	ce only - n	o correlation	betwee	n cohes	ive and	granula	ar materials is implied.
N	T: H	anjin 8D		(OPER/	ATOR:	Total Dr	rilling	(D T	rante	r)	LOGGED: Gilmour

SURFACE LEVEL: 135.5 AHD

COORDINATE: E:312102.4, N:6418510.6 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 24 PROJECT No: 224764.00 DATE: 28/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING SOIL ROCK CONSIS.⁽⁷⁾ DENSITY.⁽⁷⁾ FRACTURE STRENGTH GROUNDWATER SPACING (m) RESULTS RECOVERY (%) Ē DEFECTS & ТҮРЕ Ē MOISTURE DEPTH (m) REMARKS REMARKS NTERVAL AND **ORIGIN**^(#) GRAPHIC WEATH. SAMPLE **DEPTH** (DEPTH DESCRIPTION REMARKS TYPE LEST . RQD OF Ē STRATA Ч VSt D/ES No free groundwater observed TOPSOIL Jar w<PL 0.20 Silty CLAY (CH), with sand: × v=PL RS 0.40 Jar D/ES brown; high plasticity; fine ß to 0.50 DCDG to coarse sand. v<PI 22 0.70 0.70 D Silty CLAY (CI-CH), with 0.90 sand: pale brown grey -550-580kPa PP mottled orange; medium × SPT -3,8,10 N=18 to high plasticity; fine to \>600kPa coarse sand. 34 PP RS н × v<PI > 2 2 R 2.50 Silty CLAY (CI-CH): grey SPT 15.5/50 260 2.70-2.80m: JT, 50°, ST, HE Clay, SM × brown mottled orange; × 5M 2.82-292m: JT, KWM X medium to high plasticity; 3 trace rock fragments as 50°, PR, CN, SM 2.95-3.20m: JT, 3.10 3.10 gravel. нw PLT –PL(A)=0.12MPa VL 23532011.31, 70°, CU, TI, SM 325m : JT, 70°, ST SN Fe, RF 24 100 3.33 3.33 Silty CLAY (CI): grey 32 mottled orange; medium w<₽ н SEAN SEAM SEAM KWM plasticity; borderline silty PLT -PL(D)=0.02MPa clay / siltstone, crumbling PL(A)=0.03MPa PLT 3.86 3.86 in hand. 4 4 4.10m : P, 10°, PR, SN Fe, RF SILTSTONE: grey orange 4.11-430m: JT, 85° PR, HE Clay, SM 4.45m JT, 30°, PR SN Fe, SM 4.60m: JT, 70°, PR, SN Fe, SM Silty CLAY (CI): grey brown PLT -PL(D)=0.02MPa F mottled orange; medium \PL(A)=0.02MPa PLT НW VL plasticity; borderline silty clay / siltstone, crumbling 100 19 in hand. 4.70-4.82m : JT xx9, 60° , PR, HE PLT -PL(D)=0.02MPa 5 5 Clay, SM 5.17m : JT, 30°, ST, SN Fe, SM SILTSTONE: orange grey PL(A)=0.01MPa PLT -PL(A)=0.02MPa PLT н √<PI SEAN SEAM SEAM 5.21m: JT, 30°, PR, TI, SM \PL(D)=0.02MPa PLT R 5.52 5.30m: JT, 30° , PR, SN Fe, SM н w<PL SEAM SEAM SEAM SN Fe, SM 5.80-605m: JT xx12, 20°, PR Fe, SM, SN/HE, 002-0.03m spacing 6.10-6.15m JT, 60° PR, HE Fe, RF 6.38, 649m: JT 6 6 ==== PIT -PI (D)=0.02MPa R 6.38-648m: JT, 70°, CU, HE Fe, \PL(A)=0.05MPa мw PIT to SW VI SM 6.55m JT 30° PR SM, FE/Clay, SN/HE 7 5 6.63-6.75m: JT, 70°, PR, HE Fe, SM 100 10 PL(D)=0.05MPa PL(A)=0.07MPa PLT PLT 6.75m: JT, 30°, PR SM ß 6.85m: JT, 30° , CU CN CA, SM 7.63 w<PL н SEAN SEAM SEAM 6.87-6.95m: JT, 70°, PR, SN Fe, 8 8 SМ SW 6.98m : JT, 60°, PR, to FR SN Fe. SM PL(D)=0.79MPa PL(A)=1.02MPa PLT 720-7.33m: JT 720-733m: JT xx2, 60°, PR, SN Fe, RF 7.43m JT, 40-60°, CU, HE Fe, SM 750m JT, 10°, CU, HE Fe, SM Ð B 48 PLT t 8.87m-10.10m: pyrite 9 9 nodules 7.56-7.60m: JT. 40°, CU, SN Fe FR 100 100 RF 8.10m P, 5°, PR, HE Fe, SM 8.15m: P, 5°, PR, SN Fe, RF 9.40 UCS 9.73 PLT __PL(D)=0.39MPa H 8.17m: P. 5°. PR. cy/Relative density shading is for NOTES Soil origin is "probable" unless otherwise stated ¹Col en cohesive and q

PLANT: Hanjin 8D

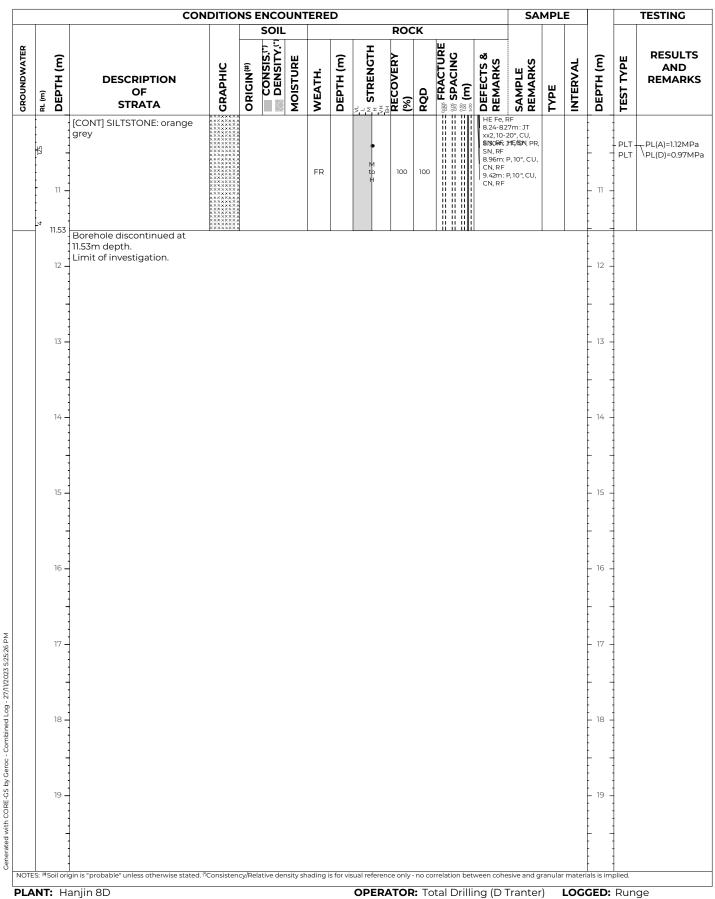
Generated with CORE-GS by Geroc - Combined Log - 27/11/2023 5:25:26 PN

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Runge

METHOD: Solid flight auger with TC bit to 2.6m, NMLC coring to 11.**!CASING:** HWT to 2.5m REMARKS:

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

CLIENI:


CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 135.5 AHD

BOREHOLE LOG

COORDINATE: E:312102.4, N:6418510.6 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 24 PROJECT No: 224764.00 DATE: 28/09/23 SHEET: 2 of 2

METHOD: Solid flight auger with TC bit to 2.6m, NMLC coring to 11.5**CASING:** HWT to 2.5m **REMARKS:**

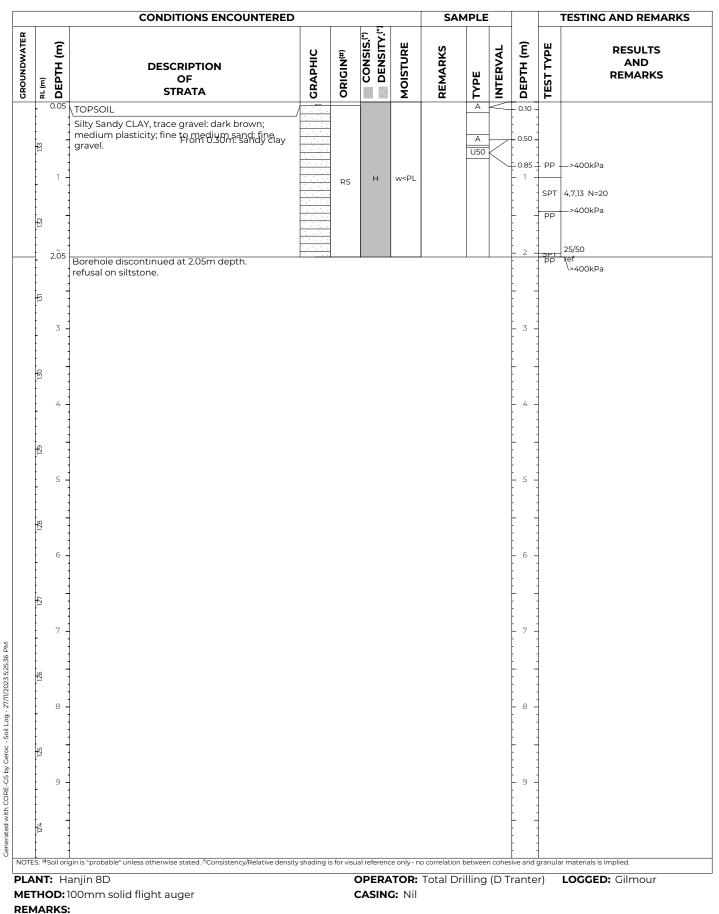
CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 134.7 AHD COORDINATE: E:312087.5, N:6418487.1 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:25 **DATE:** 26/09/23 SHEET: 1 of 1

Τ			CONDITIONS ENCOUNTEREI			<u>،</u> ٤.		JAN	MPLE				TESTING AND REMARKS
	RL (m)		DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.0	ハト	TOPSOIL	T5					A	K			
Ī			Clayey SILT, trace gravel: brown; fine gravel; rootlets.								- 0.10 -	1	
ł		ł		$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$							-	-	
						н	w <pl< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>				-		
					RS								
		1									-	1	
İ		+		× <u>×××</u> ××					A		- 0.50 -	1	
ł	0.6	50		× <u>×</u> ××× × × × ×						/ .	-	1	
14	5		Sandy CLAY, trace gravel: brown; medium plasticity; fine to medium sand; fine to						U50	K			
ſ		1	medium gravel.							$\left \right\rangle$			
ĺ		1									- 0.81 -	PP -	>400kPa
ł		+									-	-	
ł	1	4									- 1 -		
ļ													
		1									-		
ſ		ł									-	SPT	4,5,9 N=14
ł		+									-	-	
											_		
ļ												PP	>400kPa
		1										1	
Ì		1									-		
44	3	+				н	w <pl< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>				-		
											_		
		1									-	1	
İ	2	: -									- 2 -	-	
ł		+									-	-	
ļ													
		1									-	1	
t		ł									-	+	
ł		4										-	
-	4	1										SPT	10,16,25/50
4	2	1									-		ref
ł		_										+	(00) 5
1	2.8	1	Borehole discontinued at 2.85m depth. refusal on siltstone.				<u> </u>				-	PP	>400kPa
ES:	(#Soil	origi	n is "probable" unless otherwise stated. "Consistency/Relative den	sity shading is	s for visu	al referenc	e only - no	correlation	betweer	n cohes	ive and	granula	ar materials is implied.
	IT:	Ha	njin 8D		(OPERA	TOR:	Total Dr	illing	(D T	rante	r)	LOGGED: Gilmour



CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 133.6 AHD COORDINATE: E:312146.6, N:6418477.6 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:26 **DATE:** 26/09/23 SHEET: 1 of 1

SURFACE LEVEL: 134.8 AHD

LOCATION ID:27 **DATE:** 05/10/23 SHEET: 1 of 4

COORDINATE: E:312132.2, N:6418502.0 PROJECT No: 224764.00 **DIP/AZIMUTH:** 90°/---°

			CON	NDITIO		SOIL		ERE	D		D O1	~~			SA	MPL	E	-		TESTING
RL (m)	DEDTH (m)		DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)	Harch STRENGTH	RECOVERY DO	0	Bracture Spacing (m)	DEFECTS & REMARKS	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESUL ⁻ AND REMAR
_	0.0	1	TOPSOIL	TS		-				L.L.L.K						r D/ES				>600kPa
-		1	Silty CLAY (CH), trace sand: brown; high plasticity; fine to coarse sand.		RS		w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>r D/ES</td><td></td><td>- 0.20 - - 0.40 - - 0.50 - - 0.50 -</td><td></td><td></td></pl<>									r D/ES		- 0.20 - - 0.40 - - 0.50 - - 0.50 -		
4				× × ×												D	\langle		-	
134	0.9	-	Silty CLAY (CI-CH), trace sand: pale brown mottled orange grey; medium to high plasticity; fine to medium sand.			-												- 0.90 - - 1 - - ·		—>600kPa 7,10,10 N=20
-							we DI											 	PP	\>600kPa
	2				RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 2 -</td><td>-</td><td></td></pl<>											- 2 -	-	
	3		Sandy CLAY (CI): grey orange; medium plasticity; fine to medium sand.		XWM	-	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT -</td><td>—>600kPa]5,15,18 N=33 \>600kPa</td></pl<>												SPT -	—>600kPa]5,15,18 N=33 \>600kPa
· 131 · · · · · ·	3.9 4.0	00	Silty Sandy CLAY (CI): grey mottled orange; medium		XWM		w <pl< td=""><td></td><td>-4.00 -</td><td></td><td></td><td></td><td></td><td>→ 4.00-4.1 70°, PR</td><td></td><td></td><td></td><td> </td><td>SPT</td><td>20/100 ref</td></pl<>		-4.00 -					→ 4.00-4.1 70°, PR				 	SPT	20/100 ref
			plasticity; fine to medium sand. SILTSTONE: orange grey					MW SEAM SEAM	- 4.79 - - 4.75 - - 4.88 -	VL to L SEAM VL to L SEAM	100	10	SEAM	4.05-4.1 40-70°, SM, SN, 4.17m:1 SN Fe, S 4.19m:1 SN Fe, S 4.24-42 10°, PR, 4.36-44 50°, PR 4.47m: SN Fe, I	5m: JT xx5 PR, Fe, TI , 5°, PR, SM 9m: JT, HE Fe, SM 43m: JT, SN Fe, RF P, 10°, PR, R 55m: JT,				- PLT - - PLT - - PLT -	⊤PL(D)=0.13ł ⊤PL(A)=0.16ł

CASING: HWT to 2.5m

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 134.8 AHD

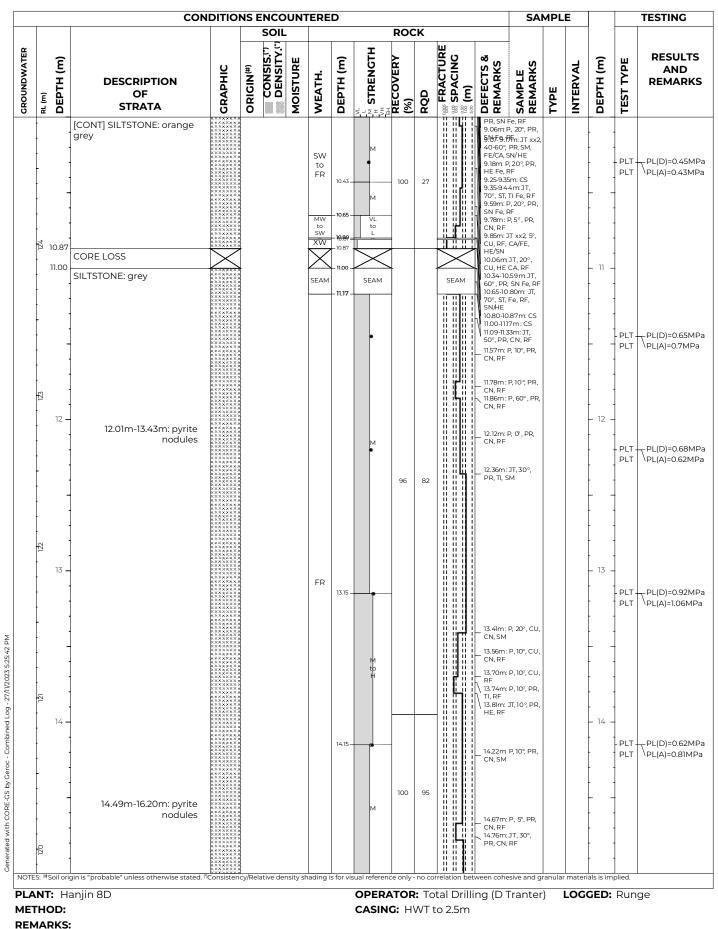
BOREHOLE LOG

COORDINATE: E:312132.2, N:6418502.0 PROJECT No: 224764.00 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:27 DATE: 05/10/23 **SHEET:** 2 of 4

						SOIL	DUNT				ROO	.K					E	-		TESTING
	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS.		WEATH.	DEPTH (m)	STRENGTH	RECOVERY (%)		<pre>% FRACTURE % SPACING % (m)</pre>	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARI
-			[CONT] SILTSTONE: orange grey		****			SEAM	- 5.51 -	VL to L SEAM	100	10		SM 5.36m: I	37m: JT, , SM, , SN/HE 97m: CS 9, 5°, PR, 5M				- PLT - PLT	⊤PL(D)=0.06 ⊤PL(A)=0.061
-	671	6 -	5.70m-5.76m: fragmented due to drilling		****			MW SEAM MW	- 5.55 - - 5.76 - - 5.87 -	VL to L SEAM	-		SEAM	SN Fe, 5.64m: HE Fe, 5.69-57	, SN Fe, 5m: CS JT, 20°, PR, 5M JT, 30°, CU, 5M 0m: JT,			- 6 -		—PL(A)=0.25№
-		· · ·	-		****			SEAM MW	- 6.12 - - 6.19 - - 6.53 -	SEAM VL			SEAM	SN Fe, I	6m : FG :7m: CS :5m: JT, , SN Fe, P, 5° , PR, RF			- · ·	- PLI -	— P L(A)-0.231
-	128	7 -	· · · ·		*****			MW	6.56	• •	100	17		SN Fe, I 6.29-6.3 - 70°, CU SM 6.40-6.4 70°, PR Fe/Clay 6.53-65 6.56-6.6	T, 70°, ST, RF 4m: JT, 50 J, HE Fe, 66m: JT, , SM, , SN/HE 6m CS 4m: JT, , Fe, SM,			- 7 -	- PLT -	PL(A)=0.16N
-		7.79	7.41m-7.43m: quartz band		*****			SEAM		SEAM	7		SEAM	6.82m: SN Fe, I 6.94m SN Fe, I 6.99m: SN Fe, I 7.05-7.1 20-50°, PO, SN	P, 5°, PR, RF P, 5°, PR, RF Om: JT xx3, CU, Fe,					PL(A)=0.11M
-	127	8 - 8.05	CORE LOSS SILTSTONE: orange grey					MW	- 7.95 - 8.05 -	VL VL			\mathbf{X}	SN Fe, I 731-739 50°, PR TI/HE 7.43-7.4 50°, PR SM 7.61m: F	RF 9m: JT, , Fe, SM, -4m: JT, , SN Fe, 9, 10°, CU,			- 8 -	- PLT -	_PL(D)=0.11Ν ∫PL(A)=0.31Ν
		-	- - - -		****			MW to SW	- 8.31 - - 8.34 - - 8.68 -	L				HE/SN 7.80m: Fe, SM, 8.05-81 8.20-82	5m: JT 9m: CS, , Fe, SM, JT, 70°, PR, SN/TI 4m: FG 25m: JT,			 	- PLT -	PL(A)=0.231
-	126	9 -			*****			SW to MW SEAM	- 9.25 -	L	100	27	SEAM	60°, PR SM 8.31-83 8.42m: CU, HE 8.45m: CN Fe, I	, HE Fe, 4m : CS JT, 20°, Fe, SM P, 5°, PR, RF JT, 20°, CU, 58m CS			- 9 -	- PLT -	PL(A)=0.18M
-	125	-	-		*****			MW SW to FR	-9.35- -9.43	м				60°, PR 8.70m: HE Fe, I 8.72m I SN Fe, I 8.80m SN Fe, I 8.83-8.8 70°, ST,	, SN Fe, RF P, 5°, PR, RF P, 5°, PR, RF P, 10°, PR, RF 39m: JT, SN Fe, RF P, 10°, PR,			 	- PLT -	−PL(A)=0.651 ↓PL(D)=0.69

METHOD: **REMARKS:** CASING: HWT to 2.5m


CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation **LOCATION:** Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 134.8 AHD

BOREHOLE LOG

COORDINATE: E:312132.2, N:6418502.0 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 27 PROJECT No: 224764.00 DATE: 05/10/23 SHEET: 3 of 4

CLIENT: Ausgrid PROJECT: New Eastern Hub Sub-Transmission Substation

LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 134.8 AHD

COORDINATE: E:312132.2, N:6418502.0 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 27 PROJECT No: 224764.00 DATE: 05/10/23 SHEET: 4 of 4

CLIENT: Ausgrid **PROJECT:** New Eastern Hub Sub-Transmission Substation

SURFACE LEVEL: 134.9 AHD

BOREHOLE LOG

COORDINATE: E:312134.5, N:6418503.1 PROJECT No: 224764.00 LOCATION: Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 27A **DATE:** 09/10/23 SHEET: 1 of 3

			con	DITIO		SOIL					ROC	ĸ			MPL	. -	-		TESTING
					-					Ŧ	RUC	~~	ш	_					
1	KL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	THENGTH	RECOVERY (%)	RQD	# FRACTURE SPACING (m) DEFECTS &	SAMPLE	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
		-	0.00m: Refer to Bore 27 for details of upper 15.8m																
		1																	
		1																	
134	2	1															- 1 -		
		ł																	
		-																	
133	2	2															- 2 -		
ł																			
F		-																	
-	,																		
13	2	3															- 3 -		
F																			
ļ																			
131	2	4															- 4 -		
ļ																			
Ī		-																	
130		_																	
ļ		5 -															- 5 -		
ŧ		-																	
Ļ																			
671	ł	6 -															- 6 -		
ļ																			
ļ																			
128	2	7															- 7 -		
ļ																			
ţ		-																	
- 44	i																		
ļ		8 -															- 8 -		
ŧ																			
	,	1																	
126	1	9 -															- 9 -		
ļ																			
ļ																			
E E	}	1															t :	1	

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin

METHOD: SFA with TC bit to 3.0m, PCD to 15.8m, NMLC to 20.58m CASINC: HWT to 2.6m **REMARKS:**

CLIENT:AusgridPROJECT:New Eastern Hub Sub-Transmission SubstationLOCATION:Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

BOREHOLE LOG

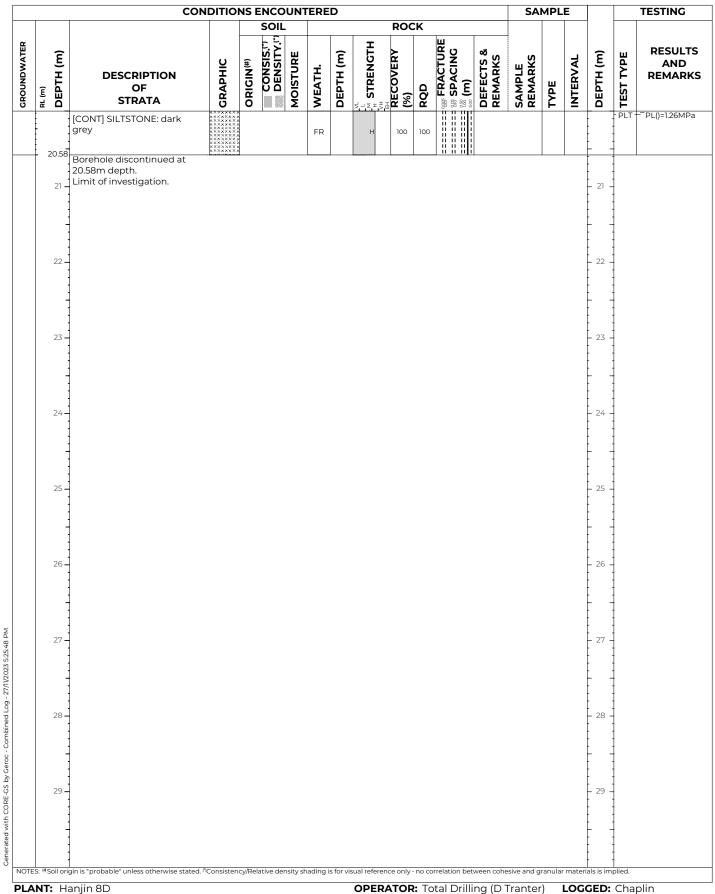
SURFACE LEVEL: 134.9 AHD **COORDINATE:** E:312134.5, N:6418503.1 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 27A PROJECT No: 224764.00 DATE: 09/10/23 SHEET: 2 of 3

				CON	DITIO	NS			ERE	D									SA	MPL	E			TESTING
							SOIL						ROC	K										
GROUNDWATER		RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	LVL M STRENGTH	CH EH	RECOVERY (%)	RQD	FRACTURE	E SPACING	¹⁰⁰ (J)	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
		471																						
	· · · · ² 4 ¹ . · · · · ·	3	12 -																			- 12 -		
		77	13 -																			- 13 -	-	
		171	14																			- 14 -		
		071	15 -																			- 15 -		
	. oll	ן =	15.80 16 -	SILTSTONE: dark grey						15.80 -	o	,	100	100								- 16 -	⊧ PLT = PLT	−PL(A)=1.74MPa \PL(D)=1MPa
MI-1 04:CZ:C CZOZ/11//		0	17 -								•	,		100				17.34m: SM	P, SH, PR,			- 17 -	- PLT -	—PL(A)=1.73MPa
1000 - COITIDI IRM EVG - 21	· · 4 ^L · · · · · · · ·	Ĩ	18 -	18.16m-18.27m: fine grained, grey sandstone					FR		н	,					T II	18.52m: PR, SM				- 18 -	- PLT -	—PL(A)=1.75MPa
Venerated with CORE-US by Veroc - Completed Log - 2//11/2025 5:23:48 PM	. 9 <u>1</u> 1		19 _								•	•	100	100				_ 18.72m: PR, SM	JT, 60°,			- 19 -	- PLT -	— PL(A)=1.95MPa
	TES:		oil ori	gin is "probable" unless otherwise stated. ⁽	Consisten	icy/Re	lative der	nsity sha	ading i	s for vis	sual refe	renc	e only -	no co		tion I		veen cohe	sive and g	ranular	materi	als is im	plied.	-

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) **LOGGED:** Chaplin


METHOD: SFA with TC bit to 3.0m, PCD to 15.8m, NMLC to 20.58m CASING: HWT to 2.6m REMARKS:

CLIENT:AusgridPROJECT:New Eastern Hub Sub-Transmission SubstationLOCATION:Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 134.9 AHD **COORDINATE:** E:312134.5, N:6418503.1 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 27A PROJECT No: 224764.00 DATE: 09/10/23 SHEET: 3 of 3

METHOD: SFA with TC bit to 3.0m, PCD to 15.8m, NMLC to 20.58m CASING: HWT to 2.6m REMARKS:

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewilbrook, NSW DATUM/GRID: MGA2020 Zone 56

SURFACE LEVEL: 135.6 AHD COORDINATE: E:312074.3, N:6418506.8 PROJECT No: 224764.00 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:28 DATE: 26/09/23 SHEET: 1 of 1

BL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
-	0.05	TOPSOIL Clayey SILT, trace gravel: dark brown; fine gravel; rootlets.	12 13 14 15 14 14 14 14 14 14 14 14 14 14	RS	н	w <pl< td=""><td></td><td>A</td><td></td><td>- 0.10 -</td><td></td><td></td></pl<>		A		- 0.10 -		
135	0.60	Sandy CLAY; medium plasticity; fine to medium sand.	×*××××××××××××××××××××××××××××××××××××					A		- 0.50 -	-	
-	1.	1.00m: V bit refusal								_ 1 -	-	
-											SPT	13,13,14 N=27
134				RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td>PP</td><td>>400kPa</td></pl<>					PP	>400kPa
	2 -									– 2 -	-	
-											-	
133	2.70	Parshala discontinued at 270m danth								 	SPT	13,25/50 ref >400kPa
-		Borehole discontinued at 2.70m depth. refusal.										

REMARKS:

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

SURFACE LEVEL: 132.4 AHD

COORDINATE: E:311938.3, N:6418467.3 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID:29 **DATE:** 28/09/23 SHEET: 1 of 3

BL (m)			CO	NDI A 4	TIONS						1			SAN	1PLE		-		TES	TING
BL (m)		DEPTH (m)	DESCRIPTION OF STRATA	Mere encountered	GRAPHIC	rs xw mw]≅ WEATH.	DEPTH (m)	,⊐.	STRENGTH 	RECOVERY (%)	RQD	SPACINE SPACING (m)	DEFECTS & REMARKS	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND	REMARKS
T	C	0.05	TOPSOIL	- 1	T5	-1 -1 -1 -1	-1-1								A	\leq	- 0.10 -			
132			Silty Sandy CLAY, trace gravel: brown; low plasticity; fine to medium sand; fine gravel.	Idawi											A	-				
-		1 _	Sandy CLAY, with gravel: pale brown; low plasticity; fine to medium sand; fine gravel. From 0.80m: pa brown/orange and gre mottlir	ile ey													 - 1 -			
131																		SPT	9,12,19 —>400l	
				[]														PP		
130			From 2.00m: gradir into extreme weathered sandstor	ly																
-	2	2.50 • • 3 –	Silty CLAY (CI), with gravel grey orange; medium plasticity; fine to medium, sub-angular gravel; gravel is siltstone fragments, borderline silty clay / siltstone.					•		100	0							- PLT -	PL(A) =0.04	MPa
671		3.22	SILTSTONE: orange grey	•		нw	3.22	2	L				322-3 27m: SN Fe, RF 329-3.36m: SN Fe, RF 3.43m: P, 5' RF 3.50-3.6m:	JT, 50°, PR,			 	PLT - PLT	1	=0.17MF =0.15MP
-						SEAM		S	EAM			SEAM	, 3.78m: JT, 3 RF	0°, PR, TI Fe,						
128		4 -				HW	4.00		L	100	40		4.10-417m: SN Fe, RF 4.20-425m CU, SN Fe, I 4.31-4.55m:	t JT xx2, 30°,	1		- 4 -	- PLT -	PL(A):	=0.16MF
		-				SEAM	4.54	s	EAM			SEAM	4.40-447m SN Fe, RF 4.75-4.80m	1: JT, 80°, ST, 1 JT, 80°, PR,						
ļ		•				н₩			VL to L				CN, RF							

PLANT: Hanjin 8D

OPERATOR: Total Drilling (D Tranter) LOGGED: Runge

METHOD: 100mm solid flight auger with TC bit, from 2.5m NMLC c CASING: HWT to 2.5m **REMARKS:**

CLIENT: Ausgrid

PROJECT: New Eastern Hub Sub-Transmission Substation LOCATION: Lot 9 DP1193430 Hebden Road, Musewllbrook, NSW

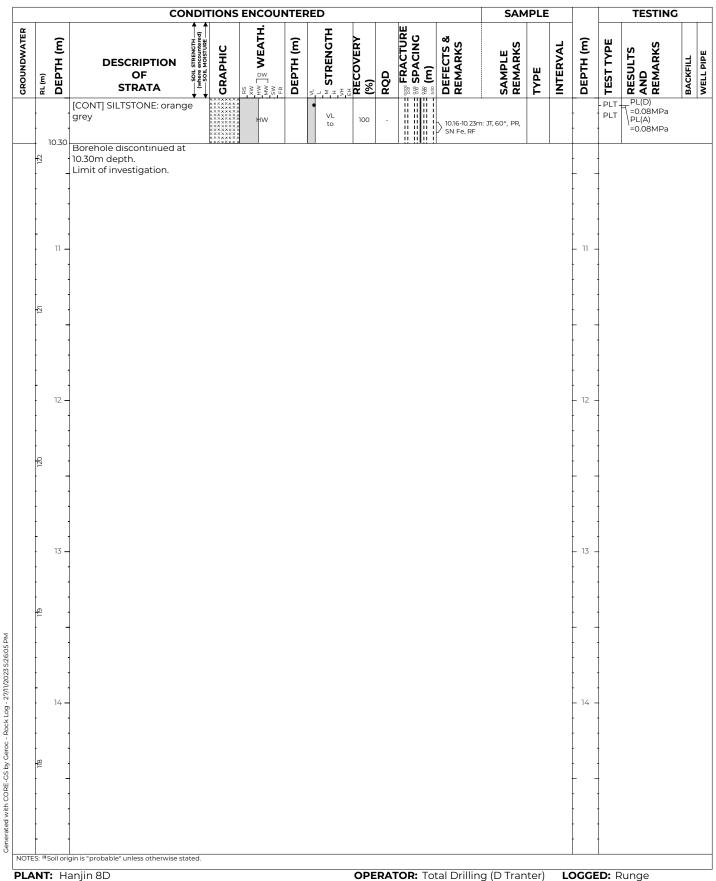
BOREHOLE LOG

SURFACE LEVEL: 132.4 AHD COORDINATE: E:311938.3, N:6418467.3 PROJECT No: 224764.00 DATUM/GRID: MGA2020 Zone 56 DIP/AZIMUTH: 90°/---°

LOCATION ID:29 **DATE:** 28/09/23 **SHEET:** 2 of 3

		- 1	CO		TIONS							SAN	1PLE			TESTING	;
GROUNDWATER RL (m)	i	DEPTH (m)	DESCRIPTION OF STRATA	 SolL STRENGTH (where encountered) SolL MOISTURE 	GRAPHIC	LRS XW HW SW SW FR	DEPTH (m)	TRENCTH STRENCTH E	RECOVERY (%)	RQD	∰ FRACTURE ∰ SPACING ∭ (m) DEFECTS & REMARKS	SAMPLE REMARKS	TYPE INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS	
			[CONT] SILTSTONE: orang grey	ge .		HW	- 5.47 -	VL to L SEAM	100	40	5.18-5.2 SN Fe,	24m: JT, 40°, CU,	,	-	-		
-		-				HW	- 5.91 -	SEAM			SEAM	JT, 40°, CU, SN Fe,		-	- - PLT - -	—PL(A)=0.26M	16
		6 _									RF 6.18m 5M 6.26-6. 5N Fe, 6.46m RF	JT, 30°, ST, SN Fe, JT, 30°, CU, HE Fe, 37m : JT, 60°, ST, RF : JT, 50°, ST, SN Fe,		- 6 -	-		
-		7									6.65m RF	: JT, 30°, CU, SN Fe, : JT, 40°, PR, SN Fe,		- 7 -	PLT PLT	PL(D)=0.14M	
		/ _ _ _							100	10	RF 7.16-72 SN Fe, 730-7. SN Fe, SN Fe,	36m: JT, 10° , PR,		- / -	-		
-						нw		L			SN Fe.	65m JT, 50°, PR, .SM 90m : JT, 70-80°, I Fe, RF		8 -	PLT.	PL(D)=0.21M	Ē
12/4		-						•			RF 8.24-8 SN Fe, 8.31-8. Fe, RF 8.50m	JT, 30°, CU, SN Fe, 30 m: JT, 60°, PR, RF 40 m: JT, 60°, CU , SN/HE : JT, 30°, CU, SN Fe, : P, 10°, PR, SN Fe,			PLT - PLT -	PL(D)=0.11MI PL(A)=0.16M	P.
		9 -									8.88m RF	: JT, 40°, CU, SN Fe : P, 10°, PR, CN, RF	,	- - - 9 -	- - - -		
123		-				SEAM	9.58	SEAM	100	-	9.27-9, SN Fe,	36m:JT,70°, PR, RF			- PLT -	PL(A)=0.13M	P
ŀ		-				SEAM HW	9.78 -	SEAM VL to L			SEAM 	: JT, 30°, PR, SN Fe,		-	-		127 J. To/A.

PLANT: Hanjin 8D


OPERATOR: Total Drilling (D Tranter) LOGGED: Runge

METHOD: 100mm solid flight auger with TC bit, from 2.5m NMLC crCASING: HWT to 2.5m **REMARKS:**

CLIENT:AusgridPROJECT:New Eastern Hub Sub-Transmission SubstationLOCATION:Lot 9 DP1193430 Hebden Road, MusewIlbrook, NSW

SURFACE LEVEL: 132.4 AHD **COORDINATE:** E:311938.3, N:6418467.3 **DATUM/GRID:** MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 29 PROJECT No: 224764.00 DATE: 28/09/23 SHEET: 3 of 3

 PLANT:
 Hanjin 8D
 OPERATOR:
 Total Drilling (D Tranter)
 LOGG

 METHOD:
 100mm solid flight auger with TC bit, from 2.5m NMLC crCASING:
 HWT to 2.5m
 REMARKS:

Appendix J

Chain of Custody Sample Receipt

CHAIN OF CUSTODY DESPATCH SHEET

- --

	ect No:	224764.	_		Suburb		Musew	librook						To:	Enviro	lab Ser	lices					
	ect Manager:	Michael				Number:	_			Samp		TLG			12 Ash	nley St,	Chatsw	ood NSV	V 2067	-	-	
Emai				louglaspart						iers.con	ı.au			Attn:	Sampl	e Recei	pt					
	around time:				48 hour				-				_		(02) 99	910 620	0	sample	ereceip	t@enviro	olab.com	.āu
Prior	r Storage: 🔽 F	ridge 🗌	Freezer	🗌 Esky 🏼 🗌	✓ Shelf	Do sam	ples co	ontain '	potent	ial' HB	M? 🗹 No		🗌 Yes(İ	f YES, the	en handi	e, transp	ort and				PM HAZIC	
	Sa	mple ID		pled	Sample Type	Container Type			_			alytes		•								
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	comboo 8	Hq	ы Ш	CEC	aggressivity suite (pH, EC, sulfate, chloride)							Note		eservatio equirem	on/ Addi ients	tional
1	2	0	0.1	25/09/23	s	G/P	~	~	~	~	,											_
2	5	0.5	0.5	25/09/23	S	G/P	1									•						
3	6	0	0.1	25/09/23	s	G/P	~								Er	wirclah S	ervices					
4	11	0	0.1	26/09/23	S	G/P	Ý					_	E	NVIROLA		12 As wood NS	siey St V 2067					
5	14	0.5	0.5	26/09/23	S	G/P	~	~	~	~			,	ob No:	83 4	n: (02) 99 95 8						<u>.</u>
<u>,</u>	17	0	0.1	26/09/23	S	G/P	~						 {	Date Rec	eived:		/23	-			3.	
7	25	0.5	0.5	26/09/23	S	G/P	✓							lime Red Received	BV: 17	1100 W		<u> </u>				
8	26	0	0.1	27/09/23	S	G/P	~	✓	~	✓				Temp: Cooling:	cellambi	ent ck4°C						
9	9	1	1.45	26/09/23							~			Security	Intact/B	oken/No						
0	10	1	1.35	26/09/23							×											<u>.</u>
11	10	2.5	2.65	26/09/23							~					ļ		 				
(2	14	1	1.2	26/09/23							~						┞					·
13	15	1	1.45	26/09/23											-			<u> </u>				
14	23	2.5	2.7	27/09/23							✓						<u> </u>					
	ls to analyse:							•								RECE						
	ber of sample					Transpo	rted to	labora	atory by	y:	FedEx					ef. No:		4958				
	results to:	Douglas														ved by		z-Wa			140	
Addre		15 Calliste		e, Warabrool												& Time	10/	10/23).	00	:	
Relin	quished by:		<u>PH</u>			Date:	9/10/20	23		Signe	d:			_	Signe	d:	4					

...

t

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

	ct No:	224764.			Subur		Musew					_		To:		ab Servi		
	ct Manager:	Michael				Number:		NC2322	03	Samp	ler:	PH						od NSW 2067
Email:				ouglaspartr										Attn:		Receip		
	round time:				48 hour			Same day		•				L	<u> </u>	10 6200		samplereceipt@envirolab.com.au
Prior S	Storage: 🗹 F	ridge 🔄	Freezer	🗹 Esky [Do sam	ples co	ntain 'p	otenti	al' HB	M? L	No	Yes	(If YE	S, then I	nandle, tra	ansport	and store in accordance with FPM HAZI
	Sa	mpie ID		pled	Sample Type	Container Type						Analyte	s					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Combo 6	Nitrogen species	PFAS extended low level	Phosphorus (reactive and total)	Anions and cations	TSS	TDS	alkalinity	hardness	Hd	ы	Notes/ Preservation/ Addition Requirements
t	LS1			20/10/23	w	G/P	1	<i>✓</i>	~	~	~	1	~	1	~	~	~	Low level PAH, PCB, OCP, PFAS please
2	LS2			20/10/23	w	G/P	1	~	1	1	~	×	~	~	~	~	~	total metal concentrations (surfac water)
																		nitrogen species - nitrate, nitrite, to nitrogen, TKN, ammonia)
				<u> </u>										1	nvirolab	Services shioy St		
													ENVIRON		swood N h: (02) 9	SW 2057		
													Job N	2200				
													Time R	sceived: aceived:	1030	123		
													Receive Temp:	cool/j.mb	v.w ient			
				L							ļ	<u> </u>	Cooling Securit	Cool/).mb Coeffcer V: Totaol/E	ack roken/N	ne		
												1						
												<u> </u>	<u> </u>					
																RECEI	<u></u>	
	s to analyse: er of sample					Transpo		labora	tory by	/:	DP				Lab R	ef. No:	2	36033
	results to:		Partners															y wayne ELS SYD
Add <u>re</u>				e, Warabroo												L Time:	24	10/23 1030
lin	uished by:	JL	L			Date:	23/1	0123		Signe	d:	-			Signe	d:		

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Michael Harris

Sample Login Details	
Your reference	224764.00 Musewllbrook
Envirolab Reference	334958
Date Sample Received	10/10/2023
Date Instructions Received	10/10/2023
Date Results Expected to be Reported	17/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	14 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	CEC
2-0-0.1	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
6-0-0.1	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
11-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
14-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
17-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
25-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
26-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9-1-1.45									\checkmark	
10-1-1.35									\checkmark	
10-2.5-2.65									\checkmark	
14-1-1.2									\checkmark	
15-1-1.45									\checkmark	
23-2.5-2.7									\checkmark	

The '\s' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Michael Harris

Sample Login Details	
Your reference	224764.00, Muswellbrook
Envirolab Reference	336033
Date Sample Received	24/10/2023
Date Instructions Received	24/10/2023
Date Results Expected to be Reported	31/10/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	5
Cooling Method	Ice
Sampling Date Provided	YES

Comments

#1- Did not receive 1 x 500mL Plastic bottle.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	OCPs in Water - Low Level	OP in water LL ANZECCF/ADWG	PCBs in Water - Low Level	PFAS in Water LOW LEVEL Extend	All metals in water - total	Metals in Waters -Acid extractable	Hq	Electrical Conductivity	Total Suspended Solids	Total Dissolved Solids(grav)	Phosphate as P in water	TKN in water	Nitrate as N in water	Nitrite as N in water	Ammonia as N in water	Total Nitrogen in water	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	Ionic Balance
LS1	✓	\checkmark	✓	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
LS2	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

GROUNDED EXPERTISE

Report on Preliminary Contamination Testing

Proposed Substation

20 Sandy Creek Road, Muswellbrook NSW

Prepared for Ausgrid

Project 224763.02

3 June 2024

Document History

Details

Project No.	224763.02
Document Title	Report on Preliminary Contamination Testing
Site Address	20 Sandy Creek Road, Muswellbrook NSW
Report Prepared For	Ausgrid
Filename	224763.02.R.002.Rev0

Status and Review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Patrick Heads	Chris Bozinovski	3 June 2024

Distribution of Copies

Status	Issued to
Revision 0	Ausgrid

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature		Date	Date	
Author	Padrik Heads	3 June 2024		
Reviewer	C. Bozinli	3 June 2024		

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Executive Summary

Douglas Partners Pty Ltd (Douglas) has been engaged by Ausgrid to prepare this Preliminary Contamination Testing for a proposed substation at 20 Sandy Creek Road, Muswellbrook NSW.

The objective was to provide a preliminary assessment of contamination within the revised development footprint located to the south of the previous area investigated by Douglas in October 2023 (Douglas, 2023).

The scope of work conducted for this assessment comprised a brief review of previous work conducted by Douglas at the site, excavation of 12 test pits, collection of soil samples under contamination sampling protocols, contamination testing of selected samples for a range of contaminants and preparation of this report.

The results of subsurface investigation indicated the following:

- The presence of fill materials (including ash) in the eastern portion of the site;
- General absence of gross contamination in soil/fill at the locations and depths tested;
- The presence of some bonded asbestos containing materials (ACM) at the site surface, likely to be associated with former structures or dumping (the extent of which is not known).

The following additional investigations are recommended to confirm contamination status and remediation requirements:

- Additional subsurface investigation to further assess the extent of the fill and site conditions in proposed areas of construction;
- Detailed surface inspection to further assess the presence of surface asbestos impacts;
- Additional assessment for waste classification to confirm requirements for off-site disposal of impacted soils, where required.

The scope of work conducted for this assessment does not constitute a Detailed Site Investigation for the assessment of contamination with reference to (NSW EPA, 2020). In addition to the above recommended additional investigations, it is recommended that an Unexpected Finds Protocol (UFP) be prepared and implemented during the proposed development.

Based on the results of the assessment, it is considered that the site can be made suitable for the proposed commercial / industrial substation development, subject to implementation of the recommendations above. Due consideration should be given to geotechnical requirements of the proposed development when formulating management/remediation options

Table of Contents

Page No

1.	Intro	pduction	1
2.	Proposed development		1
3.	Scope of work		2
4.	Site i	information	2
5.	Environmental setting		3
6.	Sum	mary of previous investigations and preliminary CSM	6
7.	Sampling Plan		
	7.1	Data quality objectives	9
	7.2	Soil sampling rationale	9
8.	Site a	assessment criteria	9
9.	Site condition		10
10.	Results		10
	10.1	Field work results	10
	10.2	Laboratory analytical results	14
11.	II. Discussion		14
	11.1	Soils	14
	11.2	Waste classification	14
	11.3	Data quality assurance and quality control	15
12.	Cond	clusions and recommendations	15
13.	References		17
14.	Limitations		17

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

Appendix A: Drawing 1 – Test Location Plan

Drawing 2 – 1974 Historical Aerial photo

- Appendix B: About This Report
- Appendix C: Data Quality Objectives
- **Appendix D:** Field Work Methodology
- Appendix E: Site Assessment Criteria
- Appendix F: Site Photographs
- Appendix G: Test Pit Logs: Pits 313 to 324

Borehole Logs – Bores 9 to 17, Bores 218 to 223

Appendix H: Laboratory Testing Reports

Laboratory Summary Tables:

Table H1: Summary of soil analysis for land use – TRH, BTEX, PAH, Metals

Table H2: Summary of soil analysis for land use – PCB, OCP, OPP, PFAS, Asbestos

Table H3: Summary of Soil Analysis for Wate Classification

Appendix I: Data Quality Assurance and Quality Control Report

Chain of Custody

Sample Receipt

Report on Preliminary Contamination Testing Proposed Substation – Revised Location 20 Sandy Creek Road, Muswellbrook NSW

1. Introduction

Douglas Partners Pty Ltd (Douglas) has been engaged by Ausgrid to prepare this Preliminary Contamination Testing for a proposed substation at 20 Sandy Creek Road, Muswellbrook NSW. The site is shown on Drawing 1, Appendix A.

The investigation was undertaken with reference to Douglas' proposal 224763.02.P.001.Rev0 dated 13 February 2024.

The objective was to provide a preliminary assessment of contamination within the revised development footprint located to the south of the previous area investigated by Douglas in October 2023 (Douglas, 2023) – refer to Section 6.

This report must be read in conjunction with all appendices including the notes provided in Appendix B.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Proposed development

Based on conversations with Ausgrid it is understood that the proposed new works are to be located to the south and outside of the existing Muswellbrook substation. The proposed development is further understood to comprise:

- An outdoor switch yard;
- Modular control room and amenities building;
- Associated electrical infrastructure works may include either a new or a modified concrete slab, some steelwork, framed cable support structures and a number of in-ground conduit banks and possibly concrete cable jointing pits;
- Bulk excavation including the following:
 - Excavation in the order of 2 m to 4.5 m below existing ground surface levels along the southern boundary of the proposed substation;
 - Placement of up to about 2.5 m of fill along the northern boundary of the proposed substation;
- Retaining walls up to 2 m in height;
- Buried pipes and electrical services;

- Hardstand pavement across switch yard;
- Associated exit/entry pavement.

3. Scope of work

The scope of work for the current assessment comprised the following:

- Brief review of the previous preliminary site investigation (contamination) (Douglas, 2023) which included the revised subject site;
- Excavation of 12 test pits within the proposed development area;
- Logging and sampling of the test pits by an environmental scientist from Douglas under contamination sampling protocols;
- Analysis of selected soil samples from the test pits for a range of contaminants; and
- Preparation of this report presenting the results of the assessment and recommendations for construction.

The above scope was conducted concurrently with a geotechnical assessment at the site, comprising the drilling of six additional boreholes within the proposed development area.

Site address	20 Sandy Creek Road, Muswellbrook NSW	
Legal description	Part Lot 12 Deposited Plan 839233	
Area	3.5 ha approx.	
Zoning	Zone C3 Environmental Management	
	Zone SP2 Infrastructure (Classified Road)	
Local Council Area	Muswellbrook Council	
Current use	vacant	
Surrounding uses	North – vacant, Ausgrid substation	
	East – vacant, possible former mining	
	South – vacant	
	West – vacant, residential	

4. Site information

The approximate site extent is shown on Figure 1. This site area and proposed development is presented in Drawing 1 in Appendix A.

Figure 1: Approximate site location (yellow) – subject site

5. Environmental setting

Regional topography	The area is generally characterised by undulating hills, slope and gullies with localised peaks/ridges. Elevations within the general area are between about RL 150 AHD and RL 350
Site topography	The subject site is located in the central-southern portion of the lot. The topography of the site and lot is characterised by the following:
	• A ridge/peak (Approx RL 212) in the south-eastern corner of the lot, falling to the north towards the subject site, which is located in the central-southern portion of the lot;
	• A gully/drainage formation in the south-western corner of the lot and to the south of the site, falling north-west;

	• A ridge/peak on the northern lot boundary (approx. RL 188-198), with side slopes falling to the south towards the subject site;
	• Gully/surface water drainage channel in the central-northern portion of the lot (Approx RL 160);
	• Site fall to the north to north-east;
	• Possible disturbed (filled?) area in the north-eastern portion of the subject site;
	Site topography shown in Figure 2 below
Soil landscape	Roxburgh soil landscape: Soils: yellow podzolic soils (Dy3.11, Dy2.41) occur on upper to midslopes with red solodic soils (Dr2.43) on more rounded hills. Lithosols (Um5.21)
	occur on crests. Brown podzolic soils (Db2.21) occur on slopes on conglomerate with associated flat pavements. Yellow soloths (Dy3.41) have been recorded in some gullies
	Landform: Undulating low hills and undulating hills with elevations of 80 – 370 m. Slopes are 0 – 10%, with slope lengths of 800 – 1200 m. Local relief is 60 – 120 m. Drainage lines occur at intervals of 300 – 1500 m
Geology	NSW Hunter Coalfield Regional geology 1:100000 map indicates that the site is underlain by the Branxton Formation, which is part of the Permian aged Maitland Group, comprising, conglomerate, sandstone and siltstone
Acid sulfate soils	Reference to published mapping indicates that the site outside mapped acid sulfate soil areas
Surface water	Drainage gullies and surface water bodies are adjacent to the site in both the northern and southern portions of the lot. Both systems flow west into Sandy Creek, which is located between 880 m to 1.3 km west to north-west of the site and is considered to be the nearest sensitive receptor
Groundwater	Search of the publicly available registered groundwater bore database was conducted as part of the PSI report (Douglas, 2023). In addition, groundwater monitoring bores were installed as part of previously work conducted by Douglas at the site. Based on the results of gauging of the existing groundwater wells as part of the previous assessment, it was inferred that there was no measurable groundwater to the depth of assessment.

Figure 2: Site topography (approximate extent of site in yellow)

Based on the regional topography and the inferred flow direction of nearby water courses, the anticipated flow direction of groundwater beneath the site is to the west, towards Sandy Creek, the likely receiving surface water body for the groundwater flow path.

6. Summary of previous investigations and preliminary CSM

Douglas conducted a preliminary site investigation for greater site area in October 2023 (Douglas, 2023). The scope of work comprised an assessment of site history (historical aerial photos, council and NSW EPA records, third party business search, historical titles search, discussion with personnel), site walkover, formulation of a conceptual site model (CSM), excavation of trenches in a former development area, drilling of boreholes (in conjunction with geotechnical investigation), contamination testing of selected soil samples and report preparation.

The investigation area included the northern portion of the current site area, plus an additional area to the north, which was found to be the location of a former small power station. The approximate location of the previous assessment is shown in Figure 3.

Figure 3: Approximate location of former investigation area (yellow)

The site history information suggests that the greater site area was originally use as grazing land before transfer of the land to the Muswellbrook Coal Company in 1945. The greater site area has been in ownership of the Muswellbrook Coal Company or various electricity suppliers/entities from 1945 to the present, suggesting that the greater site area has been used as part of coal mining/infrastructure and/or electricity generation/infrastructure since 1945. Information on historical aerial photographs suggest the presence of commercial use on the greater site area from at least 1958 (i.e. power station). Later aerial photos suggest that former power station buildings within the greater site area were removed/demolished after 1993 and before 1998.

The results of site history indicated the presence of a former structure in the northern portion of the previous investigation area (i.e. north of the current site area) and a possible storage/stockpile area and possible conveyor in the southern portion of the previous investigation area (i.e. within the northern portion of the current investigation area). Drawing 2 in Appendix A illustrates the approximate location of the structures and storage area in relation to the current investigation area (ie subject site).

The site walkover indicated the following, with respect to the current site area:

- The majority of the subject site area was cleared of mature vegetation;
- Likely fill placement, including possible ash and slag fill in the north-eastern portion of the site, as evidenced by surface fill observations and localised levelling of the surface in areas of natural slope;

The presence of likely asbestos-containing materials (ACM) in the north-eastern and northern portion of the site, as confirmed during the walkover and subsequent laboratory testing for the previous site investigation (Douglas, 2023).

The preliminary conceptual site model (CSM) as presented in the previous assessment (Douglas, 2023) is reproduced in Table 1 below. It is noted that the CSM was prepared for the previous investigation area, however, is considered to also be relevant for the current investigation area.

Table 1: Preliminary CSM - summary of potentially complete exposure pathways

Source and COPC	Transport pathway	Receptor	Risk management action
 S1: Fill, Metals, TRH, BTEX, PAH, OCP/OPP, PCB and asbestos S2: Former power station, metals, TRH, BTEX, PAH, 	Pl: Ingestion and dermal contact P2: Inhalation of dust and/or vapours	 R1: Current users (substation/Ausgrid employees) R2: Construction and maintenance workers R3: End users (Ausgrid employees)] 	An intrusive investigation is recommended to assess possible contamination including testing of the soils and groundwater.
PCB, PFAS, asbestos and VOC	P2: Inhalation of dust and/or vapours	R4: Adjacent site users (residential land use).	
S3: Former Agricultural use, metals, OCP, OPP	P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies	R5: Surface water	
	P5: Leaching of contaminants and vertical migration into groundwater	R6: Groundwater	
	P6: Inhalation, ingestion and absorption	R1: Current users (substation/Ausgrid employees)	
		R2: Construction and maintenance workers R3: End users (Ausgrid employees)] R7: Terrestrial ecosystems	
S4: Former buildings, asbestos, SMF, lead (in paint) and PCB S5: Coal mining (HGG), methane, carbon monoxide, carbon dioxide, hydrogen sulfide	P2: Inhalation of dust and/or vapours P6: Inhalation, ingestion and absorption	 R1: Current users (substation/Ausgrid employees) R2: Construction and maintenance workers R3: End users (Ausgrid employees)] R4: Adjacent site users (residential land use). 	

The results of subsurface investigation within the current site area as reported in the previous investigation (Douglas, 2023) indicated the presence of fill in the north-eastern and northern portion of the current investigation area, with fill depth in the order of 0.5 m to 1.0 m depth. The fill generally comprised silty and sandy fill with ash and coal fragments.

Limited laboratory testing was conducted within the current investigation area as part of the previous investigation (Douglas, 2023). The results of the limited testing, conducted in fill containing ash in or near to the current site area, indicated the general absence of gross contamination in the tested samples.

The previous investigation (Douglas, 2023) recommended additional investigation in the proposed area of construction, remediation of identified asbestos impacts, and additional waste classification of materials to be removed from the site. Available options for remediation included off-site disposal of impacted soils or on-site management of impacted soils with the implementation of a long-term environmental management plan, subject to regulatory approvals.

A supplementary subsurface investigation was recommended within the revised site area (i.e. within the current subject site) to further assess potential site contamination conditions.

7. Sampling plan

7.1 Data quality objectives

This supplementary contamination testing was devised with reference to the seven-step data quality objectives (DQO) process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix C.

7.2 Soil sampling rationale

A targeted/judgemental sampling strategy was utilised to determine test pit locations. The test locations were generally targeted in the areas of proposed excavation, and in areas of previously observed fill (Douglas, 2023). Test pit locations for this assessment, plus relevant boreholes from the current and previous geotechnical assessments, are shown on Drawing 1, in Appendix A.

The general sampling methods are described in the field work methodology, included in Appendix D.

8. Site assessment criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 6) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic commercial / industrial land use scenario. The derivation of the SAC is included in Appendix E and the adopted SAC are listed on the summary analytical results tables in Appendix H.

9. Site condition

Site observations were noted by a Douglas engineer on 4 March 2024. The site was vacant and vegetated with grass and scattered mature trees. Site photographs are presented in Appendix F. Relevant site features observed included the following:

- The surface levels within the subject site generally fell to the north (Photograph F1);
- Observations of some possible ash material at the surface, generally in the eastern portion of the site (Photograph F2);
- A levelled area, appearing to be cut and filled, was present in the southern portion of the site (Photograph F3), suggesting possible former land use.

10. Results

10.1 Field work results

The borehole and test pit logs for this assessment are included in Appendix G, along with relevant logs from the previous assessment (Douglas, 2023). These should be read in conjunction with the general notes preceding them, which explain the descriptive terms and classification methods used.

The subsurface conditions encountered within the test locations have been categorised into broad geotechnical units according to their inferred geological origin. The geotechnical units have been adopted from the previous investigation to the north (Douglas, 2023) for continuity, however, some of the previously defined units were not encountered during this investigation. The subsurface units encountered during this investigation are as follows:

- Unit 1 Fill; The fill generally comprised sandy clay/silty sand/sandy gravel fill with possible coal fines, ash and slag inclusions. Trace possible bituminous material was found in fill in Bore 12 from the previous investigation (Douglas, 2023).
- Unit 2 Topsoil (organics and silts):
- Unit 3: Residual soils;
 - Unit 3A (Silty Clay or Sandy Clay): Typically very stiff to hard in consistency;
 - o Unit 3B (Sand): Typically dense sand, likely originated from extremely weathered sandstone;
- Unit 4 Rock: Sandstone and Siltstone:
 - o Unit 4A Extremely weathered material (soil like properties);
 - o Unit 4B Very low strength;
 - Unit 4C Low and Medium strength;

o Unit 4D – High and Very High strength.

The predominant subsurface conditions encountered within the bores and pits are summarised in Table 2 (present investigation) and Table 3 (previous investigation) below.

Table 2: Summary of subsurface conditions (present investigation)

Table 2: Summary	or subsur		altions (p	resent inv	/estigatio	n)							1		1	1			
Test Locatio	n	218	219	220	221	222	223	313	314	315	316	317	318	319	320	321	322	323	324
RL (AHD)		191.4			186.9		192.4	187	184.4	185.1	188.9	186.6	182.8	184.9	189	180.8	183.2	185	191.4
Material Description	Unit									Depth R	ange (m)								
Fill	1	-	-	0.0 - 0.2	-	0.0 - 0.5	-	0.0 - 0.3	0.0 - 1.6	0.0 - 0.3	-	-	0.0 - 1.1	0.0 - 0.4	-	-	0.0 - 0.7	-	-
Topsoil (organics and silt)	2	-	-	-	0.0 - 0.1	-	-	-	-	-	0.0 - 0.4	-	-	-	-	0.0 - 0.2	-	0.0 - 0.1	-
Sandy Clay or Clay – Typically VST to H	3 A	0.0 - 0.7	0.0 - 0.3	0.2 - 1.1	0.1 - 0.5	0.5 - 1.35	0.0 - 0.5	0.3 - 1.7	1.6 - 4.1	0 0.9	0.4 - 2.0	0.5 - 1.2	1.1 - 2.6	0.4 - 1.5	0.0 - 0.9	0.2 - 4.3	0.7 - 4.6	0.1 - 2.1	0.3 - 0.7
Clayey Sand / Sand with Clay (Typically D to VD)	3B	-	-	-	-	-	-	-	-	-	-	0.0 - 0.5	-	-	-	-	-	-	0.0 - 0.3
Sandstone (Pebbly) (Extremely Weathered Material)	4 A	0.7 - 2.34	0.3 - 5.0	1.1 - 2.6	0.5 - 2.5	1.35 - 5.0	0.5 - 2.56	-	-	0.9 - 2.7	-	1.2 - 1.7	-	1.5 - 1.7	0.9 - 1.7	-	-	2.1 - 2.7	0.7 - 2.2
Sandstone (Pebbly) (typically VL to L)	4B	2.34 - 8.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sandstone (Pebbly) (typically L to M)	4C	-	-	-	2.5 - 8.5	-	2.56 - 8.35	-	-	-	-	-	-	-	-	-	-	-	-
Sandstone (Pebbly) (typically H to VH)	4D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Free Groundwater O (m)	bservations	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO

Notes to table:

Not encountered NFGWO = No free groundwater observed

NFGWO = No free ground VL = Very Low strength L = Low strength M = Medium strength H = High strength VH = Very High Strength VST = Very stiff H = Hard

D = Dense

VD = Very dense

GROUNDED EXPERTISE

Table 3: Summary of relevant subsurface conditions (previous investigation)

Test Locatio	on	9	10	11	12	13	14	15	
RL (AHD)		183	183.7	183.7	183.3	185.1	188.2	188.5	
Material Description	Unit	Depth Range (m)							
Fill	1	-	-	-	0.0-0.55	-	-	-	
Topsoil (organics and silt)	2	0.0 - 0.03	0.0 - 0.03	0.0 - 0.03	-	0.0 - 0.03	0.0 - 0.03	0.0 - 0.03	
Sandy Clay – Typically VST to H	3A	0.03 - 2.3	0.03 - 1.85	0.03 - 2.16	0.55 - 3.9	0.03 - 3.5	0.03 - 2.66	0.03 - 1.0	
Clayey Sand / Sand with Clay (Typically D to VD)	3B	-	-	-	-	-	-	-	
Sandstone (Pebbly) (Extremely Weathered Material)	4A	2.3 - 2.4	1.85-3.42c	-	-	3.5 - 4.3	-	1.0 - 2.57	
Sandstone (Pebbly) (Typically VL to L)	4B	-	3.42 - 4.8a	2.16 - 4.32	3.9 - 4.22	4.30 - 6.92a	2.66 - 3.15a	2.57 - 5.25a	
Sandstone (Pebbly) (Typically L to M)	4C	-	4.8 - 10.0	4.32 - 6.35d	-	6.92 - 10.0	3.15 - 10.0d	5.25 - 10.0	
Sandstone (Pebbly) (Typically H to VH)	4D	-	-	6.35 - 10.0	-	-	-	-	
Free Groundw Observations		NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	NFGWO	

Notes to table:

Not encountered NFGWO = No free groundwater observed VL = Very Low strength L = Low strength M = Medium strength H = High strength VH = Very High Strength VST = Very stiff H = Hard D = Dense VD = Very dense Page 13 of 18

No visual or olfactory evidence (e.g. staining, odours, free phase product) was observed at the test locations during the investigations to suggest the presence of gross contamination within the soils or groundwater at the locations tested within the subject site.

Contaminant observations in the test pits and boreholes was limited to the presence of coal, ash and/or slag in fill at some test locations in the current investigation (Bores 220 and 222, Pits 314, 318, 319 and 322), and possible bituminous material in fill in one bore from the previous investigation.

The PID screening recorded values of less than 1 ppm suggesting the absence of gross volatile impacts in the soil samples tested.

Free groundwater was not observed during excavation of test pits or drilling of boreholes. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

10.2 Laboratory analytical results

The results of laboratory analysis are summarised in the following tables in Appendix H:

- Table H1: Summary of results of soil analysis for land use TRH, BTEX, PAH, Metals;
- Table H2: Summary of results of soil analysis for land use PCB, OCP, OPP, PFAS, Asbestos;
- Table H3: Summary of results of soil analysis for waste classification.

The laboratory certificates of analysis are presented in Appendix H. The chain of custody and sample receipt information are provided in Appendix I.

11. Discussion

11.1 **Soils**

The analytical results for all contaminants tested in all samples were below the SAC with the exception of slightly elevated nickel concentrations in the sample from Pit 322/0.05 (fill containing ash/slag and coal), where concentrations exceeded the conservative EIL of 60 mg/kg.

Detectable TRH, PAH and PFAS concentrations were encountered in some fill/soil samples from the test pits, however, all concentrations were well within the adopted commercial/industrial land use criteria.

11.2 **Preliminary waste classification**

Contaminant concentrations in the fill and soil samples tested were all within 'General Solid Waste' criteria for total concentrations (CTI), with the exception of some slightly elevated nickel concentrations (314/0.5, 314/1.5, 318/0.1, 322/0.05) which exceeded the CTI criteria. Trace PFAS concentrations were also encountered in one sample /322/0.05).

Subsequent leachability (toxicity characteristic leaching procedure – TCLP) testing was conducted on selected soil samples to confirm waste classification with reference to (NSW EPA, 2014). The results of TCLP testing, as presented in Table H3 in Appendix H, indicated that chemical concentrations in the soils tested were within 'General Solid Waste' criteria, based on total and leachable chemical concentrations.

It is recommended that specific waste classification assessment be conducted for soils proposed to be disposed from the site to an appropriately licensed landfill. Additional assessment is also recommended for underlying natural materials (i.e. potential virgin excavated natural materials or excavated natural materials) proposed for off-site re-use, if applicable.

Asbestos containing materials (as fibro fragments) were identified at the surface of the proposed development area. The approximate locations are shown on Drawing 1, Appendix A. It is recommended that a surface clearance be conducted by an appropriately licensed asbestos assessor/occupational hygienist prior to excavation of soils at the site. Consideration should also be given to the waste classification of asbestos-impacted soils, if encountered. It is noted that a detailed asbestos assessment has not been conducted at the site. The assessment suggested the absence of gross contamination in fill/soil at the locations tested. Fill was however observed within the proposed development area. Therefore the potential presence of contamination including asbestos, cannot be discounted due to the presence and potential variability of fill.

11.3 Data quality assurance and quality control

The data quality assurance and quality control (QA/QC) results are included in Appendix I. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

12. Conclusions and recommendations

The data collected for this preliminary contamination testing has generally confirmed that certain potential contaminant sources outlined in the CSM outlined in Section 6 pose a potentially complete pathway to the identified receptor(s) whilst others do not. No other sources of contamination have been identified as a result of the testing results. The CSM as presented in Section 6, from the previous assessment (Douglas, 2023) is considered to be suitable for continued use at this site.

Douglas has conducted limited contamination testing at the site, following completion of a preliminary site investigation for the greater lot as part of previous investigations (Douglas, 2023). The assessment has been conducted to assess the potential for contamination at the site based on past and present land uses and to comment on the need for further investigation and/or management. The possible contamination sources identified included the presence of former power station activities on the site, demolition of former structures associated with the power station, the presence of fill and former agricultural activities.

The results of the preliminary assessment indicated the following:

• Previous site use included agricultural use and later commercial/industrial use (likely associated with mining and/or electrical generation) including a power station, and demolition of former structures;

- The proposed area of development was formerly part of the power station development, and may have included possible storage/stockpiling area and a conveyor. The majority of power station structures were generally north of the current investigation area, as indicated in the previous assessment (Douglas, 2023);
- The presence of fill materials, including ash, in the eastern portion of the site is likely to be associated with former power station activities (i.e. possible waste coal ash from power station activities);
- Subsurface investigation and contamination testing on selected samples indicated the general absence of gross contamination at the locations and depths tested;
- The presence of some bonded asbestos containing materials at the site surface, likely to be associated with former structures or dumping. It is noted that the extent of asbestos containing materials at the site is not known.

The following additional investigations are recommended to confirm contamination status and remediation requirements:

- Additional, subsurface investigation within the site to further assess the extent of the fill and site conditions in proposed areas of construction;
- Detailed surface inspection to further assess the presence of surface asbestos impacts;
- Additional assessment for waste classification to confirm requirements for off-site disposal of impacted soils, where required.

The scope of work conducted for this assessment does not constitute a Detailed Site Investigation for the assessment of contamination with reference to (NSW EPA, 2020). In addition to the above recommended additional investigations, it is recommended that an Unexpected Finds Protocol (UFP) be prepared and implemented during the proposed development.

The UFP would include measure to assist in the identification of potential impacts in soil/fill such as those presented below via visual or olfactory indicators:

- Waste materials in fill, including building and demolition waste;
- Fibrous cement fragments (e.g. asbestos-containing materials);
- Stained or odorous fill or soil;
- Ash and / or slag. Contamination testing on ash conducted as part of this investigation indicated the general absence of gross contaminant concentrations in the samples tested. It is noted, however, that contaminant levels in ash materials can be variable.

In the event of an unexpected find, a suitably qualified contaminated land consultant should be engaged to inspect the find and provide advice on the appropriate course of action.

Based on the results of the assessment it is considered that the site can be made suitable for the proposed commercial / industrial substation development subject to implementation of the recommendations above. Due consideration should be given to geotechnical requirements of the proposed development when formulating management/remediation options

13. **References**

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

Douglas. (2023). Report on Preliminary Site Investigation (Contamination), Proposed Muswellbrook Substation, 20 Sandy Creek Road, Muswellbrook, prepared for Ausgrid. 224763.01: Douglas Partners Pty Ltd.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2014). Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority.

NSW EPA. (2020). Guidelines for Consultants Reporting on Contaminated Land. Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

14. Limitations

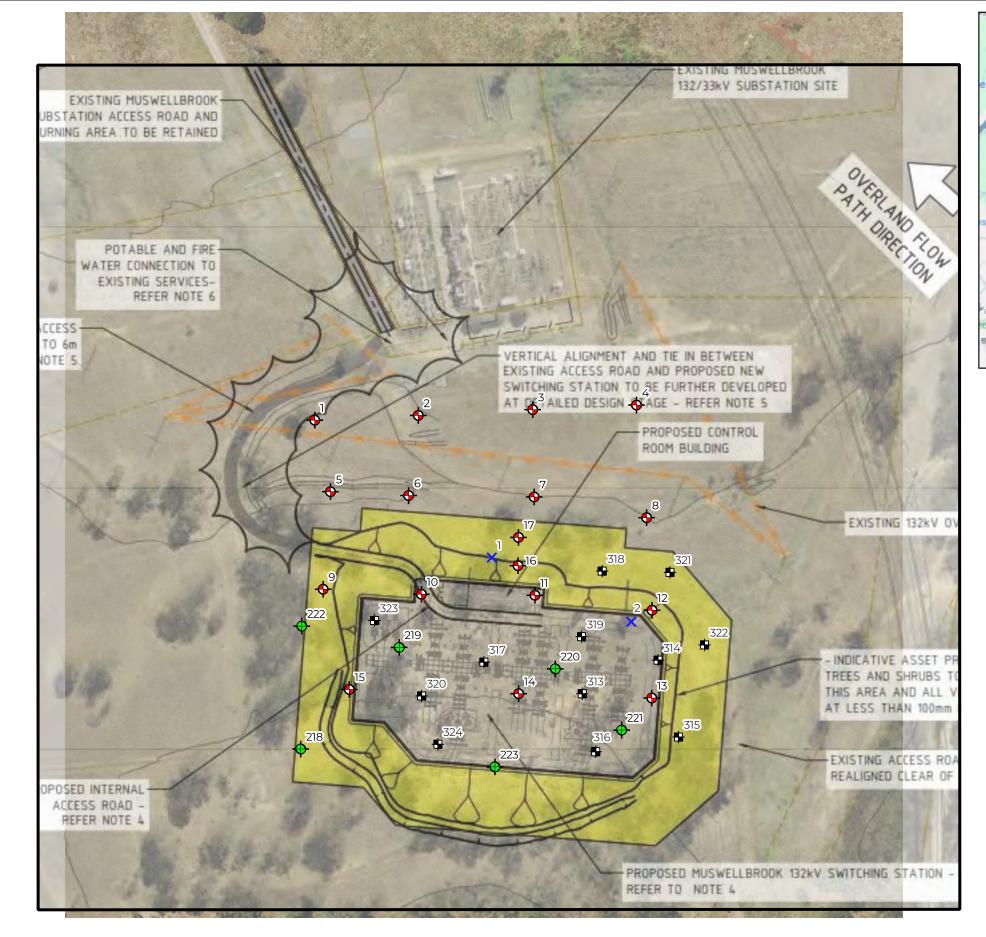
Douglas Partners Pty Ltd (Douglas) has prepared this report for this project at 20 Sandy Creek Road, Muswellbrook NSW with reference to Douglas' proposal dated 13 February 2024, acceptance received from Matthew Faferko dated 14 February 2024 and Ausgrid Statement of Work dated 15 February 2024. The work was carried out under Ausgrid contract No AOP000022. This report is provided for the exclusive use of Ausgrid for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of Douglas, does so entirely at its own risk and without recourse to Douglas for any loss or damage. In preparing this report Douglas has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after Douglas' field testing has been completed.

Douglas' advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by Douglas in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.


This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by Douglas. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has been previously detected by observation and by laboratory analysis on the surface of the site. Subsurface investigation has also indicated the presence of fill materials (potentially variable) within the greater lot and the current investigation area. Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that additional HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that additional asbestos is not present.

Appendix A

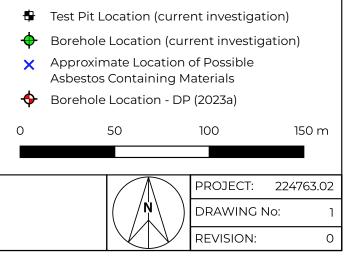
Drawing 1 – Test Location Plan

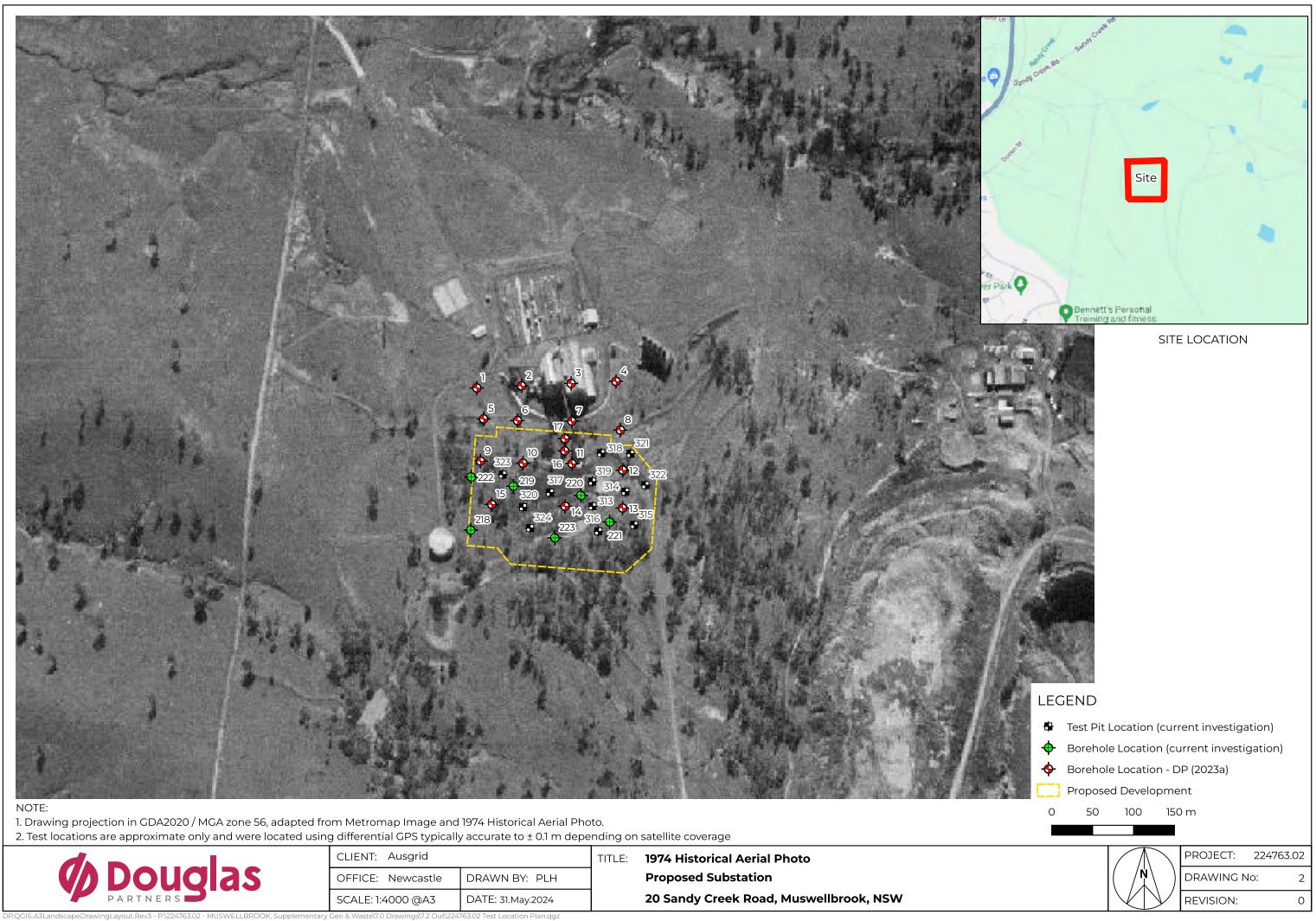
Drawing 2 – 1974 Historical Aerial Photograph

NOTE:

1. Drawing projection in GDA2020 / MGA zone 56, adapted from Metromap Image, Substation Layout supplied by the Client. 2. Test locations are approximate only and were located using differential GPS typically accurate to ± 0.1 m depending on satellite coverage

CLIENT: Ausgrid		TITLE:	Test Location Plan, Supplementary Assessment
OFFICE: Newcastle	DRAWN BY: PLH		Proposed Substation
SCALE: 1:2000 @A3	DATE: 31.May.2024		20 Sandy Creek Road, Muswellbrook, NSW


DP.QGIS.A3LandscapeDrawingLayout.Rev3 - P.\224763.02 - MUSWELLBROOK, Supplementary Geo & Waste\7.0 Drawings\7.2 Out\224763.02 Test Location Plan.qgz



۲

SITE LOCATION

CLIENT: Ausgrid		TITLE:	1974 Historical Aerial Photo
OFFICE: Newcastle	DRAWN BY: PLH		Proposed Substation
SCALE: 1:4000 @A3	DATE: 31.May.2024		20 Sandy Creek Road, Muswellbrook, NSW

Appendix B

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at

the time of construction as are indicated in the report; and

• The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

continued next page

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

intentionally blank

Appendix C

Data Quality Objectives

1. Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objectives (DQO) process which is provided in Appendix B, Schedule B2 of NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Table 1: Data quality objectives

Step	Summary
	The objective of the investigation is to assess the contamination status of the site with respect to the proposed land use. The report is being undertaken as the land is to be redeveloped.
1: State the	A preliminary conceptual site model (CSM) has been prepared (Section 6) for the proposed development.
problem	The project team consisted of experienced environmental engineers and scientists working in the roles of Project Principal, Project Reviewer, Project Manager, field staff.
2: Identify the decisions / goal of	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 6). The CSM identifies the associated contaminants of potential concern (CoPC) and the likely impacted media. The site assessment criteria (SAC) for each of the CoPC are detailed in Appendix E.
the study	The decision is to establish whether or not the results fall below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective will be derived and a decision made on whether (or not) further assessment and / or remediation will be required.
3: Identify the information	Inputs to the investigation will be the results of analysis of samples to measure the concentrations of CoPC identified in the CSM (Section 6) at the site using NATA accredited laboratories and methods, where possible. The SAC for each of the CoPC are detailed in Appendix E.
inputs	A photoionisation detector (PID) will be used on-site to screen soils for VOC. PID readings will be used to inform sample selection for laboratory analysis.
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken. Constraints to the assessment are identified and discussed in the conclusions of the report.
5: Develop the analytical approach (or decision rule)	The decision rule is to compare all analytical results with SAC (Appendix E, based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible.

Step	Summary
	Where a sample result exceeds the adopted criterion, a further site- specific assessment will be made as to the risk posed by the presence of that contaminant(s).
	Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL)) to assess potential risks posed by the site contamination. Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, and laboratory results, RPDs should generally be below 30%; for field blanks, results should be at or less than the limits of reporting (NEPC, 2013). The field and laboratory quality assurance assessment is included in Appendix I.
	Baseline condition: Contaminants at the site exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis).
6: Specify the performance or acceptance criteria	Alternative condition: Contaminants at the site comply with human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis).
Criteria	Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true.
7: Optimise the design for obtaining data	As the purpose of the sampling program is to assess for potential contamination across the site, the sampling program is reliant on professional judgement to identify and sample the potentially affected areas.
	Further details regarding the proposed sampling plan are presented in Section 7.

2. References

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix D

Field Work Methodology

1. Guidelines

The following key guidelines were consulted for the field work methodology:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013);
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).

2. Soil Sampling

Soil sampling is carried out in accordance with Douglas' standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the excavator bucket at the nominated sample depth;
- Collect near surface samples using hand tools;
- Place samples into laboratory-prepared glass jars with Teflon lined lids, capping immediately and minimising headspace within the sample jar;
- Place samples into laboratory-prepared containers (specific for PFAS), capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for photoionisation detector (PID) screening;
- Collect ~500 ml samples in zip-lock bags for fibrous asbestos and asbestos fines (FA and AF) analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for cross-contamination;
- Collect 10% replicate samples for quality control (QC) purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory;
- Use chain of custody documentation.

Reference was made to HEPA (2020) for requirements specific to PFAS.

2.1 Field testing

Field testing is carried out in accordance with Douglas' standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

3. References

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Appendix E

Site Assessment Criteria

1. Introduction

1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013);
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011);
- HEPA PFAS National Environmental Management Plan (NEMP) (HEPA, 2020).

1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: commercial / industrial.
 - Corresponding to land use category 'D', commercial / industrial such as factories and industrial sites.
- Soil type: sand. The natural soils are predominantly clay, however, the fill assessed at the site is generally a coarse-grained material.

2. Soils

2.1 Health investigation and screening levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Table 1: Health investigation levels (mg/kg)

Contaminant	HIL-D
Metals	
Arsenic	3000
Cadmium	900
Chromium (VI)	3600
Copper	240 000
Lead	1500
Mercury (inorganic)	730
Nickel	6000
Zinc	400 000
РАН	
B(a)P TEQ	40
Total PAH	4000
Phenols	
Phenol	240 000
ОСР	
DDT+DDE+DDD	3600
Aldrin and dieldrin	45
Chlordane	530
Endosulfan	2000
Endrin	100
Heptachlor	50
НСВ	80
Methoxychlor	2500
ОРР	
Chlorpyrifos	2000
РСВ	
РСВ	7

Contaminant	HSL-D	HSL-D	HSL-D	HSL-D
SAND	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	3	3	3	3
Toluene	NL	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	230	NL	NL	NL
Naphthalene	NL	NL	NL	NL
TRH FI	260	370	630	NL
TRH F2	NL	NL	NL	NL

Table 2: Health screening levels (mg/kg)

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Table 3: Health screening levels for direct contact (mg/kg)

Contaminant	DC HSL-D	DC HSL-IMW
Benzene	430	1100
Toluene	99 000	120 000
Ethylbenzene	27 000	85 000
Xylenes	81 000	130 000
Naphthalene	11 000	29 000
TRH FI	26 000	82 000
TRH F2	20 000	62 000
TRH F3	27 000	85 000
TRH F4	38 000	120 000

Notes: TRH F1 is TRH C6-C10 minus BTEX

TRH F2 is TRH $>C_{10}-C_{16}$ minus naphthalene

IMW intrusive maintenance worker

2.2 Health investigation levels for per- and poly-fluoroalkyl substances in soil

The laboratory analytical results for per- and poly-fluoroalkyl substances (PFAS) in soil have been assessed against HIL published in HEPA (2020). The HIL represent a nationally-agreed suite that should be used to inform site investigations. The HIL are intentionally conservative, and an exceedance of these criteria may not constitute a risk if other exposure pathways are controlled. An exceedance of the HIL should trigger further investigations, such as a site-specific risk assessment. At the time of this investigation, screening values were available only for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS).

The HIL derived from Table 2 of HEPA (2020) are in Table 4.

Table 4: Health investigation levels (mg/kg)

Contaminant	HIL-D
PFOS and PFHxS *	20
PFOA	50

Notes: * Includes PFOS only, PFHxS only and the sum of the two.

2.3 Asbestos in soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 5.

Table 5: Health screening levels for asbestos

Form of asbestos	HSL-D
АСМ	0.05%
FA and AF	0.001%
FA and AF and ACM	No visible asbestos for surface soil *

Notes: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

2.4 **Ecological investigation levels**

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 7, with inputs into their derivation shown in Table 6.

Table 6: Inputs to the derivation of the ecological investigation levels

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	Existing commercial site
рН	4	Assumed, conservative value
CEC	5 cmol₀/kg	Assumed, conservative value
Clay content	10%	Assumed, conservative value
Traffic volumes	high	Established site
State / Territory	NSW	

Table 7: Ecological investigation levels (mg/kg)

Contaminant	EIL-D
Metals	
Arsenic	160
Copper	75
Nickel	60
Chromium III	670
Lead	1800
Zinc	190
РАН	
Naphthalene	370
ОСР	
DDT	640

Notes: EIL-D commercial/industrial

2.5 **Ecological screening levels**

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 8.

Table 8: Ecological screening levels (mg/kg)

Contaminant	Soil Type	ESL-D
Benzene	Coarse	75
Toluene	Coarse	135
Ethylbenzene	Coarse	165
Xylenes	Coarse	180
TRH FI	Coarse/ Fine	215*
TRH F2	Coarse/ Fine	170*
TRH F3	Coarse	1700
TRH F4	Coarse	3300
B(a)P	Coarse	1.4

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH $>C_{10}-C_{16}$ including naphthalene

ESL-D commercial/industrial

2.6 Ecological soil guideline values

The interim ecological soil guideline values (EGV) derived from Table3 of HEPA (2020) are in Table 9.

Table 9: Ecological soil guideline values (mg/kg) – all land uses

Contaminant	Direct exposure	Indirect exposure
PFOS	1	0.01
PFOA	10	NC
PFHxS	NC	NC

Notes: NC no criterion

2.7 Management limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

The adopted management limits are in Table 10.

Table 10: Management limits (mg/kg)

Contaminant	Soil type	ML-D
TRH FI	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	3500
TRH F4	Coarse	10 000
TRH FI	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	5000
TRH F4	Fine	10 000

Notes: TRH FI is TRH C_6 - C_{10} including BTEX TRH F2 is TRH $>C_{10}$ - C_{16} including naphthalene

ML-A-B-C residential, parkland and public open space

3. **References**

ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australia and New Zealand Environment and Conservation Council.

ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Canberra, ACT: Australian and New Zealand Governments and Australian state and territory governments.

CRC CARE. (2011). Health screening levels for petroleum hydrocarbons in soil and groundwater. Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

HEPA. (2020). *PFAS National Environmental Management Plan (NEMP)*. Version 2.0: Heads of EPAs Australia and New Zealand and Australian Government Department of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NHMRC. (2008). Guidelines for Managing Risks In Recreational Water.

NHMRC. (2019). Guidance on Per and Polyfluoroalkyl (PFAS) in Recreational Water. National Health and Medical Research Council.

NHMRC, NRMMC. (2022). Australian Drinking Water Guidelines 6 2011, Version 3.7. Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council.

Warne, M., Batley, G., van Dam, R., Chapman, J., Fox, D., Hickey, C., & Stauber, J. (2018). *Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants.* Canberra: Australian Government Department of Agriculture and Water Resources.

Appendix F

Site Photographs

Photograph F1: looking north-east from the western portion of the site, with the site falling to the north (existing substation in background)

Photograph F2: Possible ash and coal gravel at the site surface, generally in the eastern portion of the site

Photograph F3: levelled area in the southern portion of the site, looking west

Appendix G

Test Pit Logs Pits 313 to 324

Borehole Logs – Bores 9 to 17, Bores 218 to 223

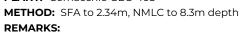
BOREHOLE LOG

SURFACE LEVEL: **COORDINATE:** E:303297.3, N:6430277.4 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 218 **DATE:** 07/03/24 SHEET: 1 of 2

		CON	DITIO				ERE	D						SA	MPL	E			TESTING
ыт (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)	STRENGTH	RECOVERY 2 (%)	R D D	(E)	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
,	-	Sandy CLAY (CI), trace gravel: orange brown; medium plasticity; fine to coarse sand.		RS		w <pl< td=""><td></td><td></td><td>2</td><td><u></u></td><td></td><td></td><td></td><td></td><td>в В D U50</td><td></td><td>- 0.10 - - 0.20 - </td><td>-</td><td></td></pl<>			2	<u></u>					в В D U50		- 0.10 - - 0.20 - 	-	
0.	1 1	Sandy CLAY (CL), trace gravel: pale brown; low plasticity; fine to medium, rounded to sub-rounded gravel; extremely weathered pebbly sandstone, friable.		XWM	Н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td></td><td>- 0.70 -</td><td></td><td>—>600kPa 14,24,25 N=49 —>600kPa</td></pl<>									SPT		- 0.70 -		—>600kPa 14,24,25 N=49 —>600kPa
2.	.34	SANDSTONE: pale brown. 2.00m: driller observed increase in resistance indicative of rock SANDSTONE: pale brown with orange brown iron staining		XWM	NA	NA	-	2.34 - - 2.80 -	• VL				_ 2.80m F PR, Clay				- 2 -	- - - - - - - - - - -	— PL(D)=0.05MF
	4 -	3.58m-3.66m: carbonate cemented					н₩	3.58 3.66		100	73		RF 3.67m: J RF 	T, 45°, PR, T, 10°, PR, P, SH, PR, IT, 50°, PR, 1 JT, 45°,				PLT	— PL(A)=0.1MPa ∖PL(D)=0.05MI — PL(D)=1.3MPa
DTES: ^M Soi	- - - - - - - -	in is "probable" unless otherwise stated. ⁽	Consisten	cy/Rela	tive der	nsity sh	ading	s for vis	L No ual refere	ence only	- no co		4.78m . RF	1T, 60°, PR		materi		PLT	—PL(A)=0.04Ml ∖PL(D)=0.07Ml

METHOD: SFA to 2.34m, NMLC to 8.3m depth **REMARKS:**



BOREHOLE LOG

SURFACE LEVEL: **COORDINATE:** E:303297.3, N:6430277.4 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 218 **DATE:** 07/03/24 SHEET: 2 of 2

1			CON	ΟΙΤΙΟ	NS				U							SA	MPL	E		ļ	TESTING
						SOIL	-			_		ROC									
	RL (m)		DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)			RECOVERY (%)	RQD	SPACINE SPACING	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT: AND REMARK
			[CONT] SANDSTONE: pale brown with orange brown			_		-			-66	100	73	1 11 11 11 11							
			iron staining							•				-	5.45m: F Clay, RF	P, SM, PR,					
		-						нw							5.70m: 3 RF, DB3	IT, 45°, PR,			-	-	
	e									•									- 6 -	PLT	—PL(A)=0.13MF ∖PL(D)=0.05M
		-								L		100	100								
	5	,						MW	- 6.80 -	•									- 7 -		PL(D)=0.06M ∖PL(A)=0.16MI
		-	From 7.40m: colour becomes grey						- 7.40 -											- PLT -	
	8							FR											- 8 -	-	
		- 1	Borehole discontinued at 8.30m depth. Limit of investigation.																_	- PLT -	PL(A)=0.12MI
	ç																				
	(**		in is "probable" unless otherwise stated. ⁽⁷ (- 1-	1-e ¹ . 1															

CASING: HWT to 2.3m

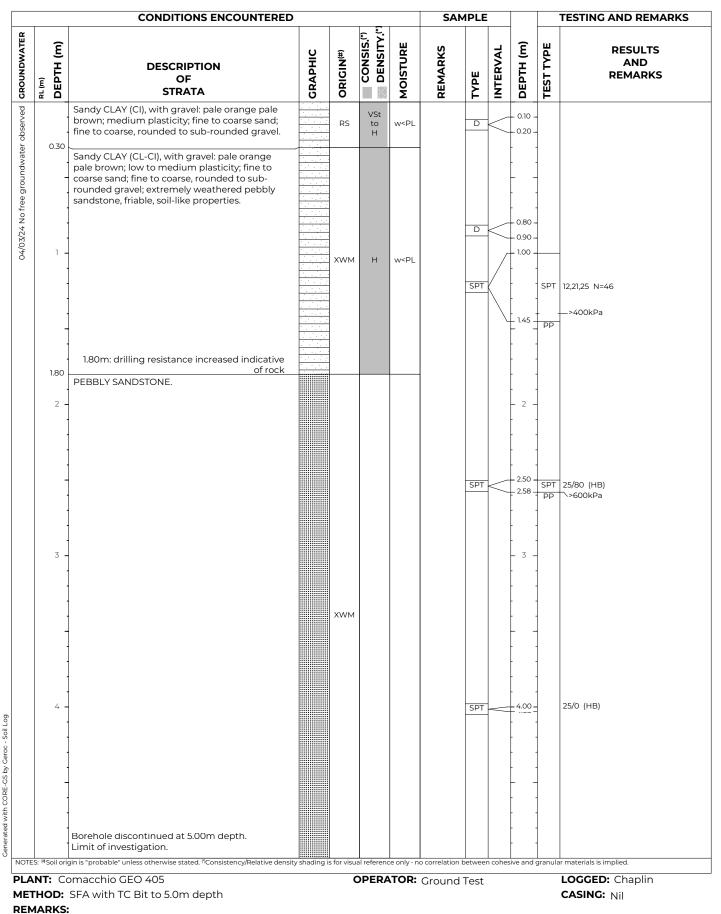
CORE PHOTO LOG

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL:

COORDINATE: E:303297.3, N:6430277.4 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 218 DATE: 07/03/24 SHEET: 1 of 1



CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL:

COORDINATE: E:303288.0, N:6430246.6 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 219 **DATE:** 04/03/24 SHEET: 1 of 1

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL:

COORDINATE: E:303203.4, N:6430212.0 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 220 **DATE:** 04/03/24 SHEET: 1 of 1

	CONDITIONS ENCOUNTERED			£ 5.			MPLE			<u> </u>	TESTING AND REMARK
RL (m) DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
0.20	FILL / Sandy CLAY (CL), with silt, with gravel: brown; low plasticity; fine to coarse sand; fine to coarse, angular to sub-angular gravel; contains coal fragments, abundant rootlets to		FILL	NA	w <pl< td=""><td></td><td>D</td><td>\langle</td><td>- 0.20 -</td><td></td><td></td></pl<>		D	\langle	- 0.20 -		
-	0.1m. Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel.		RS	н	w <pl< td=""><td></td><td>D</td><td><</td><td>- 0.50 - - 0.60 - </td><td>-</td><td></td></pl<>		D	<	- 0.50 - - 0.60 - 	-	
1 - 1.10	Sandy CLAY (CL), with gravel: pale brown pale								- 1.00 -		1
	orange; low plasticity; fine to coarse, rounded to sub-rounded gravel; friable, extremely weathered pebbly sandstone.		XWM	н	w <pl< td=""><td></td><td>SPT</td><td></td><td></td><td>SPT</td><td>3,10,18 N=28 410kPa —>600kPa</td></pl<>		SPT			SPT	3,10,18 N=28 410kPa —>600kPa
1.80	1.80m: driller observed increase in resistance indicative of rock PEBBLY SANDSTONE.								 		
2 -	PEBBLY SANDSTONE.		XWM						- 2 - 	-	
-							SPT	<	- 2.50 - - 2.50 -	SPT	25/50 (HB)
	Borehole discontinued at 2.60m depth. Limit of investigation.										
3 -											
-											
- 4 -											
-											
	gin is "probable" unless otherwise stated. "Consistency/Relative densit	y shading i				correlation Ground		n cohes	ive and g		r materials is implied.

SURFACE LEVEL: **COORDINATE:** E:303333.5, N:6430278.1 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 221 **DATE:** 07/03/24 SHEET: 1 of 2

		CON			NCO SOIL		ERE	D		ROC	ж			SA	MPL	E			TESTING
BL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)	STRENGTH	RECOVERY (%)		ERACTURE	DEFECTS &	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULI AND REMARI
	0.10	SILT (ML), with sand, with gravel: pale brown; low plasticity; fine to medium sand; fine to coarse, sub- angular to sub-rounded gravel.		RS	NA H	w <pl< td=""><td></td><td>1</td><td>L.L.P</td><td></td><td></td><td></td><td>il</td><td></td><td>B</td><td></td><td>- 0.10 - - 0.20 - - 0.30 -</td><td>-</td><td></td></pl<>		1	L.L.P				il		B		- 0.10 - - 0.20 - - 0.30 -	-	
	0.50	CLAY (CI), with sand, trace gravel: orange brown; medium plasticity; fine to coarse sand; fine to medium, rounded to sub- rounded gravel.													D U50		- 0.50 -	- PP -	—>600kPa
	- 1 - - -	Sandy CLAY (CL), with gravel: pale brown pale orange; low plasticity; fine to coarse, rounded to sub- rounded gravel; extremely weathered pebbly sandstone, friable.		XWM	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td></td><td>- 1.00 - </td><td>SPT PP</td><td>7,25/140 —>600kPa</td></pl<>									SPT		- 1.00 - 	SPT PP	7,25/140 —>600kPa
	-																		
	2 -	2.20m: driller observed increase in resistance															- 2 -		
	2.20	PEBBLY SANDSTONE: orange brown.		хwм	NA	NA													
	2.50 2.70	2.50m-2.70m: clast PEBBLY SANDSTONE: orange brown, fine to coarse grained CORE LOSS: 0.3m	$\overline{\mathbb{N}}$		<u> </u>		нw	- 2.50 -	м					'Om: FC, ed clast			 - ·	-	
	3.00	PEBBLY SANDSTONE: orange brown, fine to coarse grained					\square	- 3.00 -					RF	JT, 15°, PR,			- 3 -		
	- -						нw	- 3.40 -	L	80	40		RF	JT, 10°, PR,			- ·		PL(A)=0.44M ∖PL(D)=0.4M
	- 4 -						SEAM	_3.72-	SEAM	_		SEAM	Fe, RF 3.87m: Fe, RF 3.95m Fe, RF	JT, SH, PR, JT, 10°, PR, JT, 45°, IR,				-	
							нw	_ 4.40 -		- 100	53	Ľ	→ 4.14-4.2				- ·		—PL(A)=0.23№ ∖PL(D)=0.29№
	•								м	100	62		DB? 4.80-4						
		gin is "probable" unless otherwise stated. [[]			ali na stan	- 14 14	L.			100	62	ان النہ ان	DB? 4.98m:	JT, 10° , PR,					

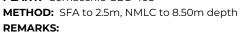
METHOD: SFA to 2.5m, NMLC to 8.50m depth **REMARKS:**

CASING: HWT to 2.5m

CLIENT: Ausgrid

PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW


BOREHOLE LOG

SURFACE LEVEL:

COORDINATE: E:303333.5, N:6430278.1 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 221 **DATE:** 07/03/24 SHEET: 2 of 2

	DESCRIPTION OF STRATA	CRAPHIC	ORIGIN ^(#)	MEATH.	DEPTH (m) DEPTH (m)	SEAM		GON COLOR	Fe, RF	: P, SH, PR, .05m : FC .10m: DS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	STRATA [CONT] PEBBLY SANDSTONE: orange brown, fine to coarse	CRA	ORIC	-	- 5.05 -	SEAM			SEAM 5.00m Fe, RF 5.00-5	.: P, SH, P R, .05m : FC .10m: DS	ТҮРЕ	INTE	DEPI		
	SANDSTONE: orange brown, fine to coarse			-	- 5.05 -	SEAM			SEAM 5.00m Fe, RF 5.00-5	.: P, SH, P R, .05m : FC .10m: DS		-	-		
7 -									Fe, RF	: DB			-		—PL(A)=0.42M ∖PL(D)=0.22M
8 -							100	59	550-5 5.63m Fe, RF 5.63-5 5.84m Fe, RF 5.88-6 SV, IR	: P, SH, PR, 70m : FC 1 JT, SH, IR,		-	6 –		
8 -									6.29m Fe, RF 6.36m Fe, RF 6.42m Fe, RF	: JT, 45°, PR, : P, 10°, PR, : P, 10°, PR,		-	-		
-				нw	, ,	M			TI Fe,	P,10°, PR,		-	7 -		—PL(A)=0.36N ∖PL(D)=0.02N
-						0	100	82				-	-		–−PL(A)=0.38N ∖PL(D)=0.04I
									— 799m Ti Fe,	(P, 10°, PR,		-	8 _		
	Borehole discontinued a 8.50m depth. Limit of investigation.	t				•			!! ! Г ! ! Fe, RF	: JT, 30°, PR,		-	=	PLT =	_PL(D)=0.31M] PL(A)=0.36N
9_															

CASING: HWT to 2.5m

Refer to explanatory notes for symbol and abbreviation definitions

CORE PHOTO LOG

SURFACE LEVEL: COORDINATE: E:303333.5, N:6430278.1 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 221 DATE: 07/03/24 SHEET: 1 of 1

Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL:

COORDINATE: E:303353.2, N:6430241.8 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 222 **DATE:** 07/03/24 SHEET: 1 of 1

() []	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	TVPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.50	FILL / SILT (ML), with sand, trace gravel: pale brown grey; low plasticity; fine sand; fine to medium, rounded to sub-rounded gravel; possibly ash.	x x x x x x x x x x x x x x x x x x x	FILL	NA	w <pl< td=""><td></td><td>D</td><td></td><td>- 0.20 - - 0.30 - - 0.50 -</td><td>-</td><td></td></pl<>		D		- 0.20 - - 0.30 - - 0.50 -	-	
	-	CLAY (CI), with sand, trace gravel: red orange; medium plasticity; fine to coarse sand; fine to medium, rounded to sub-rounded gravel.		RS	н	w <pl< td=""><td></td><td>U50</td><td></td><td>- 0.78 -</td><td>- PP -</td><td>—>400kPa</td></pl<>		U50		- 0.78 -	- PP -	—>400kPa
	1.35	Sandy CLAY (CL), with gravel: pale brown pale						SPT			SPT	10,13,19 N=32 1>400kPa ->400kPa
	-	orange; low plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel; extremely weathered pebbly sandstone.									PP	
	2 -			XWM	н	w <pl< td=""><td></td><td></td><td></td><td>- 2 -</td><td>-</td><td></td></pl<>				- 2 -	-	
	-							SPT		- 2.50 - - 2.64 -	SPT PP	25/140 >600kPa
	3.00	PEBBLY SANDSTONE.								_ 3 _	- - - -	
	-										-	
	4 -			XWM				SPT	$\langle \rangle$	- 4.00 - - 4.10 -	SPT PP	25/100 (HB) >600kPa
	- - -									 		
	-	Borehole discontinued at 5.00m depth. Limit of investigation.										
		in is "probable" unless otherwise stated. "Consistency/Relative dension acchio CEO 405	y shading i				correlation Ground		n cohes	ive and		Logged: Chaplin

BOREHOLE LOG

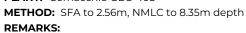
SURFACE LEVEL: **COORDINATE:** E:303178.8, N:6430252.2 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 223 **DATE:** 07/03/24 SHEET: 1 of 2

		CON	DITIO				ERE	D		RO	CK			SA	MPL	E			TESTING
GROOND WALEK	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)		ECOVERY	0	FRACTURE SPACING (m) (m)	DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	тезт түре	RESULTS AND REMARKS
	0.50	CLAY, with sand, trace gravel: orange brown; fine to coarse, rounded to sub- rounded gravel. Sandy CLAY (CL), with gravel: pale brown; low plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel; extremely weathered pebbly sandstone, friable. 2.00m: driller observed increase in resistance indicative of rock SANDSTONE (PEBBLY).		xwm		w <pl w<pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>B U50 SPT</td><td></td><td></td><td>SPT</td><td>8,25/140</td></pl<></pl 									B U50 SPT			SPT	8,25/140
		PEBBLY SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained					HW	- <u>3.00</u> - <u>3.03</u> - <u>3.03</u> -	o M SEAM	100	67	SEAM	Fe, RF 2.81m J	1T, SH, PR, T, SH, PR, 1T, 45°, PR, 0m: DS	SPT		- 2.50 - - 2.56 - 	PLT	25/60 —PL(D)=0.05MI ∖PL(A)=0.37MF
	-							- 3.20 - - 3.45 -	VL				320-33 3.43m: : TI Fe, R - 3.60m:	IT, SH, PR, F			- · ·		—PL(A)=0.37MF ∖PL(D)=0.09M
	4 -						нw		• •	100	95						- 4 -	PLT	PL(D)=0.07M _PL(A)=0.35Mi PL(D)=0.32M
OTES: M	- - - - 	jin is "probable" unless otherwise stated. ⁽⁷		cy/Polo	itive des	nsity eb	ading	sforvic			- 00.02		ween cobo	siye and a	rapulas	materi		PLT	PL(D)=0. \PL(A)=0.3

METHOD: SFA to 2.56m, NMLC to 8.35m depth **REMARKS:**

CASING: HWT to 2.5m



BOREHOLE LOG

SURFACE LEVEL: **COORDINATE:** E:303178.8, N:6430252.2 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 223 **DATE:** 07/03/24 SHEET: 2 of 2

	CON		NS			ERE	U							SA	MPL	E	ļ	<u> </u>	TESTING
RL (m) DEPTH (m)	DESCRIPTION	GRAPHIC	ORIGIN ^(#)			WEATH.	DEPTH (m)	STRENGTH		ROC	<u>K</u>	E SPACTURE SPACING SPACING (m)	DEFECTS &	SAMPLE REMARKS	ш	INTERVAL	DEPTH (m)	TEST TYPE	RESULT: AND REMARK
ש (ש) של	OF STRATA	GRA	ORIC	υD	MOI	NE/	DEP	FS تقارح) (%)	RQD			SAM	TYPE	INTE	DEP	TESI	
	[CONT] PEBBLY SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained			312	<u>1 –</u>		-	> 2-1	- <u>></u> #	100	95		- 5.441	n: DB		-		•	
6 -	· · ·							•					5.68r Fe, R	n: JT, 10°, PR, F			- - - 6 -		—PL(D)=0.24M ∖PL(A)=0.73M
	• • • • •					нw		ð	1				1/ DB?	574m: FG, 690m: FG			- - - -	PLT - PLT	PL(A)=0.4MF ∖PL(D)=0.3MF
7 -								0		100	90						- 7 -	PLT <u>-</u> PLT	—PL(D)=0.19M ∖PL(A)=0.39M
8 -	- - - -													8.23m : JT, R, TI Fe, RF,			- 8 -	- - - - -	PL(D)=0.52M
9 -	Borehole discontinued at 8.35m depth. Limit of investigation.																		₹pl(a)=0.39M

CASING: HWT to 2.5m

CORE PHOTO LOG

SURFACE LEVEL: COORDINATE: E:303178.8, N:6430252.2 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 223 DATE: 07/03/24 SHEET: 1 of 1

Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 187.0 AHD

COORDINATE: E:303288.9, N:6430213.3 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 313 **DATE:** 12/03/24 SHEET: 1 of 1

					-			l: 90°/			1	1	SHEET: 1 of 1
			CONDITIONS ENCOUNTERED			. E		SAM	1PLE		-		TESTING AND REMARKS
El (m)		лерін (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
186		ł	FILL / Sandy CLAY (CL), with silt, with gravel: mottled red orange; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; with organics, rootlets; trace coal fines.		FILL	NA	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 0.20 -</td><td>-</td><td>_<1ppm</td></pl<>		D/ES		- 0.20 -	-	_<1ppm
. 186	1	1 - - - 1	Sandy CLAY (CL), with gravel: pale brown orange; low plasticity; fine to medium, sub- angular to sub-rounded gravel.		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 0.80 - - 1 -</td><td>PID - PP</td><td>√<1ppm √>400kPa</td></pl<>		D/ES		- 0.80 - - 1 -	PID - PP	√<1ppm √>400kPa
-		• • •	Sandy CLAY (CL), with gravel: pale brown orange; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone.		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- - - 1.50 -</td><td>PID -</td><td>√<1ppm √>400kPa</td></pl<>		D/ES		- - - 1.50 -	PID -	√<1ppm √>400kPa
185 .	4	-	Test Pit discontinued at 1.70m depth. Limit of investigation. Solid rock encountered								- 2 -	-	
		-									+ - -	- - - -	
184	1.7	3 -									- 3 - - -	- - - -	
182	2	4									 - - - - 4 -	- - - -	
		-									- - - - 	- - - -	
		-							1.6				
											-		
								-					
			And the second					and the second					
			Pit 313							Spo	oil fro	m Pi	t 313
	#Soil	l oric	gin is "probable" unless otherwise stated. ("Consistency/Relative densit	y shading is	s for visu	lroforono						-	a sectoriale in incollect

Generated with CORE-GS by Geroc - Soil Log with Photo

CLIENT:

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 184.4 AHD **COORDINATE:** E:303329.0, N:6430231.1 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 314 **DATE:** 12/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED)				SA	MPLE				TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
~	0.10	FILL / Silty SAND (SM), trace gravel: brown; fine	286886	XPOXX	NA	NA	ц.	D/ES				<1ppm
184	-	to medium; fine to medium, sub-angular to sub-rounded gravel; trace organics, rootlets. FILL / Sandy GRAVEL (GP): dark brown grey; fine to medium, sub-angular to sub-rounded; fine to medium sand; with coal fines, slag, ash.		FILL	NA	NA		D/ES		- - - 0.50 -	PID -	—<1ppm
183	0.90	FILL / Sandy CLAY (CL), with gravel: mottled grey brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub- rounded gravel; trace coal fines, slag, ash.		FILL	NA	NA		D/ES		- 1 - - - - - - - -	PID	—<1ppm
-	1.60 2 -	Sandy CLAY (CL): pale orange brown; low plasticity; fine to medium sand.		\$222				0,20		- 2 -		
182	3 -			RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>2.50 - - - - - - - - - - - - - - - - - - -</td><td>PID PP</td><td>√<1ppm √>400kPa</td></pl<>		D/ES		2.50 - - - - - - - - - - - - - - - - - - -	PID PP	√<1ppm √>400kPa
181	-											
	4 -			-						- 4 -	-	
	-	Test Pit discontinued at 4.10m depth. Pit wall collapse, no solid rock encountered								- - - - - -		
FS ^{, (#}	¹ Soil or	Pit 314	ity shading i	s for view	al reference	e only - po		betwee		bil from		
-S: (#	Soil ori	gin is "probable" unless otherwise stated. ⁽ "Consistency/Relative dens	ity shading i	s for visua	al referenc	e only - no	o correlation	n betweer	n cohes	sive and	granula	ar materials is implied.

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 185.1 AHD **COORDINATE:** E:303339.9, N:6430190.4 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56

LOCATION ID: 315 DATE: 12/03/24 SHEET: 1 of 1

_		CONDITIONS ENCOUNTERED			- -		SA	MPLE		-		TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
185	0.30	FILL / Sandy CLAY (CL), with silt, with gravel: orange brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-		FILL possibly TOP	NA	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- - 0.20 -</td><td>PID -</td><td><1ppm</td></pl<>		D/ES		- - 0.20 -	PID -	<1ppm
-	- - - -	rounded gravel. Sandy CLAY (CL), with gravel: pale orange brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>0.50 -</td><td>PID - PP</td><td><1ppm >400kPa</td></pl<>		D/ES		0.50 -	PID - PP	<1ppm >400kPa
184	0.90	gravel. Sandy CLAY (CL), with gravel: pale brown orange; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; extremely weathered sandstone, friable.						D/ES		- 1.00 - 	PID - PP	<1ppm \>400kPa
183	2 -			XWM	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>2.00 -</td><td>PID - PP</td><td>≺1ppm √>400kPa</td></pl<>		D/ES		2.00 -	PID - PP	≺1ppm √>400kPa
182	3 -	Test Pit discontinued at 2.70m depth. Limit of investigation. Solid rock encountered.								- 3 -		
	- - - -											
181	4 -									- 4 -		
-												
						A REAL			という		たいないの	
		Fit 315						North Contraction		bil fro		+ 315
		רב ארט מישט אין אין איז אין איז אין איז איז איז איז איז איז איז איז איז איז										

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 188.9 AHD COORDINATE: E:303296.1, N:6430182.6 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 316 **DATE:** 12/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED					/san	1PLE				TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
-	0.40	TOPSOIL / Silty Sandy CLAY (CL): brown; low plasticity; fine to medium sand; with organics, rootlets.		TOP	VSt	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- - 0.20 -</td><td>PID - PP</td><td><1ppm 200kPa</td></pl<>		D/ES		- - 0.20 -	PID - PP	<1ppm 200kPa
188	-	CLAY (CL), with sand, trace gravel: orange brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel.		RS	н	w <pl< td=""><td></td><td>D/ES</td><td>-</td><td>0.70 -</td><td>PID- PP</td><td>√<1ppm √>400kPa</td></pl<>		D/ES	-	0.70 -	PID- PP	√<1ppm √>400kPa
- - - -	1.10	Sandy CLAY (CL), with gravel: pale brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone.		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 1.20 -</td><td>PID - PP</td><td><1ppm >400kPa</td></pl<>		D/ES		- 1.20 -	PID - PP	<1ppm >400kPa
- 481	2 -	Test Pit discontinued at 2.00m depth.						D/ES		- 1.70 -	1	
-		Limit of investigation. Solid rock encountered										
186										-	-	
-	3 -									- 3 - -	+ + +	
-	-									- -	-	
185	4 -									- - 4 -	+ + +	
	-									- - 	-	
184										-	-	
ES: (#	Soil ori	Pit 316 gin is "probable" unless otherwise stated. "Consistency/Relative densit	y shadina is	for visu	al referenc	e only - no	correlation	oetwee		oil from		
		gin is "probable" unless otherwise stated. "Consistency/Relative densit	y snauing is				JE & J R			ave and	granula	LOGGED: Krebs

METHOD: 600mm Bucket **REMARKS:**

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 186.8 AHD

COORDINATE: E:303236.9, N:6430230.0 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 317 DATE: 12/03/24 SHEET: 1 of 1

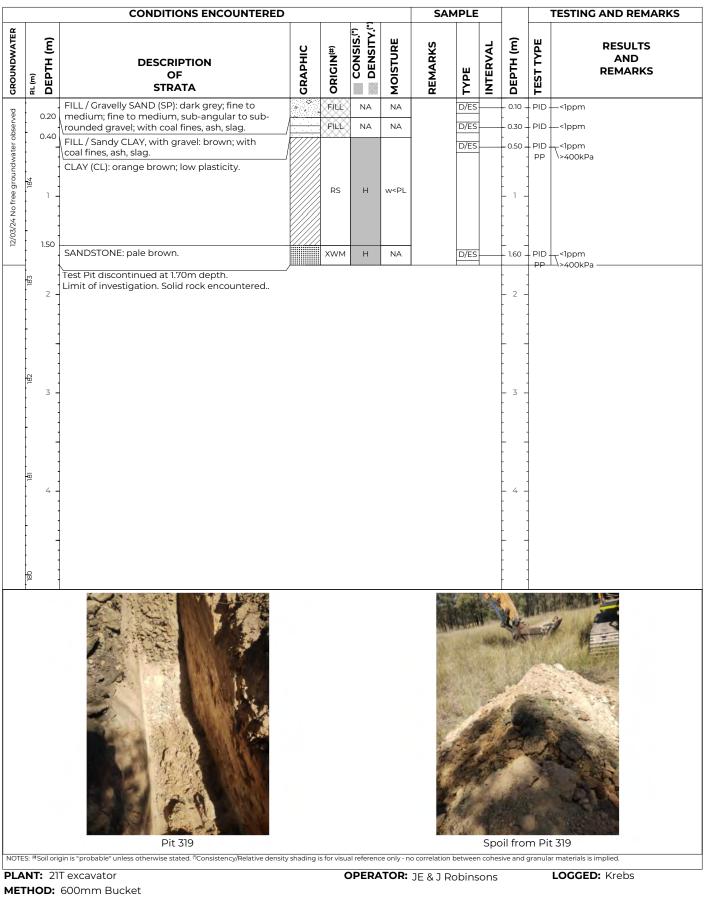
							H: 90°/					SHEET: 1 of 1
		CONDITIONS ENCOUNTERED					SAM	IPLE				TESTING AND REMARKS
GROUNDWATER RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.50	Clayey SAND (SC), with silt, trace gravel: brown; fine to medium, sub-angular to sub-rounded gravel; trace organics, rootlets.		RS	NA	NA		D/ES		- 0.10 -	PID -	_ <lppm< td=""></lppm<>
12/03/24 No free groundwater observed	1 -	Sandy CLAY, trace gravel: pale orange brown; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone.		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 0.60 -</td><td>PID - PP</td><td>≺-1ppm √>400kPa</td></pl<>		D/ES		- 0.60 -	PID - PP	≺-1ppm √>400kPa
12/03/24 h	1.20	Sandy CLAY, with gravel: pale brown; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone, friable. Test Pit discontinued at 1.70m depth.		хwм	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 1.50 -</td><td>PID - PP</td><td>√<1ppm √>400kPa</td></pl<>		D/ES		- 1.50 -	PID - PP	√<1ppm √>400kPa
-	2 -	Limit of investigation. Solid rock encountered								- 2 -		
184										- 3 -		
										· · ·		
183	4 -									- 4 -	-	
182	- - - -											
ł							1	ALL ST	N.V.			
								POR		25	AN AN	
		Pit 317							Spo	il froi	m Pi	t 317
		gin is "probable" unless otherwise stated. "Consistency/Relative densit	y shading i							ive and		
	OD:	T excavator 600mm Bucket :		C	PERA	TOR:	JE & J Ro	bins	ons			LOGGED: Krebs

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 182.8 AHD DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 318 **COORDINATE:** E:303299.5, N:6430278.2 **PROJECT No:** 224763.02 **DATE:** 12/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED)				SA	MPLE				TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
-	0.20	FILL / Silty Sandy CLAY (CL), trace gravel: brown; low plasticity; fine to medium sand; fine	× >	FILL	NA	NA		D/ES	-	0.10		<lppm< td=""></lppm<>
-	-	to medium, sub-angular to sub-rounded (gravel; with organics, rootlets. FILL / Clayey SAND (SC), with gravel: brown;		FILL	NA	NA		D/ES		0.50 -	PID -	<1ppm
μΩ Ι	0.70 1 1.10	fine to medium; fine to medium, sub-angular to sub-rounded gravel; with coal fines, ash, slag. FILL / Clayey SAND (SC), with gravel: brown;		FILL	NA	NA		D/ES	-	1.00 -	PID -	—<1ppm
-	-	fine to medium; fine to medium, sub-angular to sub-rounded gravel; trace coal fines, ash, slag. CLAY (CL): mottled orange brown; low						D/ES		-	PID -	<1ppm
181.	2 -	plasticity.		RS possibly XWM	Н	w <pl< td=""><td></td><td></td><td></td><td>- 2 -</td><td>PP</td><td>\>400kPa</td></pl<>				- 2 -	PP	\>400kPa
180	-	Test Pit discontinued at 2.60m depth. Limit of investigation. Solid rock encountered	//////	1						-	-	
-	3 -									- 3 -	-	
. 641	4 -									- - - 4 -		
178	- - - -									- - -	-	
<u>}</u>	1											
		Spoil from Pit 318								Pit	318	
:S: 伸S	Soil orio	gin is "probable" unless otherwise stated. ("Consistency/Relative densi	ity snadind i	is for visua	al referenc	e only - nc	o correlation	betwee	n cohe	sive and	granula	ar materials is implied.



CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 184.9 AHD

DIP/AZIMUTH: 90°/---°

DATUM/GRID: MGA2020 Zone 56

LOCATION ID: 319 COORDINATE: E:303288.6, N:6430243.5 PROJECT No: 224763.02 DATE: 12/03/24 SHEET: 1 of 1

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 189.0 AHD **COORDINATE:** E:303203.9, N:6430212.1 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 320 **DATE:** 12/03/24 SHEET: 1 of 1

								H: 90%					SHEET: of
			CONDITIONS ENCOUNTERED			- F		SAM	1PLE				TESTING AND REMARKS
GROUNDWAIER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
			Sandy CLAY (CL), with gravel: brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel;		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- - 0.20 - -</td><td>PID PP</td><td>lppm >400kPa</td></pl<>		D/ES		- - 0.20 - -	PID PP	lppm >400kPa
iz/03/24 indiree groundwarer observed	- - -	- - - - - - - - - - - - - - - - - - -	\trace organics, rootlets. Sandy CLAY (CL), with gravel: pale orange brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; gravels extremely weathered pebbly		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- - - 0.70 - -</td><td>PID PP</td><td></td></pl<>		D/ES		- - - 0.70 - -	PID PP	
	188	1 -	\sandstone. SANDSTONE: pale brown; extremely weathered pebbly sandstone.		хwм	н	NA		D/ES		- 1 - - - - - 1.50 -	PID	<]ppm
	187	2 -	Test Pit discontinued at 1.70m depth. Limit of investigation. Solid rock encountered								- 2 -	PP	\>400kPa
-	186	3 -									- - - - - - - - -		
-	185	4 -									- - - - - - - - -		
									A State of the second sec				
OTES	S: (# S	5oil ori	Pit 320 gin is "probable" unless otherwise stated. "Consistency/Relative density	y shading	is for visu	al referenc	e only - no	correlation b	Detween		il fror		
_A	NT	: 21	T excavator		C	OPERA	TOR:	JE & J Ro	bins	ons			LOGGED: Krebs

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 180.8 AHD

COORDINATE: E:303335.3, N:6430277.5 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

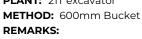
LOCATION ID: 321 DATE: 12/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED	>				SA	MPLE				TESTING AND REMARKS
(m	DEPTH (m)	DESCRIPTION OF	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
RL (m)	D	STRATA	<u> </u>				RE		Ż			
	0.20	TOPSOIL / Silty SAND (SM): brown; fine to medium; with organics, rootlets.		TOP possibly FILL	NA	NA		D/ES		- 0.10 -		
	0.50	Sandy CLAY (CL), trace gravel: orange brown; low plasticity; fine to medium, sub-angular to sub-rounded gravel.		RS	NA	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 0.30 -</td><td>PID PP</td><td><1ppm >400kPa</td></pl<>		D/ES		- 0.30 -	PID PP	<1ppm >400kPa
190	- - 1 -	Sandy CLAY (CL), with gravel: orange brown; low plasticity; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone.						D/ES		- 1.00 -		<1ppm
			1.1.1.1								PP	\>400kPa
	-										-	
1/1	2 -			· · · · · · · · · · · · · · · · · · ·						- 2 -		
				RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td></pl<>					-	
	-			-							-	
0/2	3 -			-						- 3 -	-	
	-										+ -	
	-											
	4									- 4 -	-	
	-											
	-	Test Pit discontinued at 4.30m depth. Limit of investigation. No solid rock encountered								 	-	
9/.											-	
								NAN.		2	E	
							The second	The second second	-			A E
												A Star
								-				THE .
							1410		137			and the second s
		and the second						「	T		AL AL	
							T.	The second	The second			1. 3.1
		Pit 321							Spo	bil froi	m Di	+ 321
		PIL JZI							Spc	лно	III PI	L JZI

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 183.2 AHD **COORDINATE:** E:303353.6, N:6430239.1 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 322 **DATE:** 12/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED)				SA	MPLE				TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
<u>م</u>	0.10	FILL / Silty SAND (SM), with gravel: grey brown;		XPIDEX	NA	NA NA	<u>a</u>	D/ES	=	- 0.05 -	PID ·	<1ppm
183	0.10 - -	fine to medium; fine to medium, sub-angular to sub-rounded gravel; with organics, rootlets; with coal fines, ash, slag. FILL / Silty SAND (SM), with gravel: brown; fine		FILL	NA	NA		D/ES		- 0.30 -	PID -	— <lppm< td=""></lppm<>
	0.70	to medium; fine to medium, sub-angular to sub-rounded gravel; with coal fines, ash, slag.		RS	н	w <pl< td=""><td></td><td></td><td></td><td>100</td><td></td><td>- Norman</td></pl<>				100		- Norman
182	1 – 1.10	Sandy CLAY (CL), trace gravel: orange brown; low plasticity; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone.		- - - -				D/ES		- 1.00 - - -	PID PP	<1ppm >400kPa
	- - - -	Sandy CLAY (CL), with gravel: orange brown; low plasticity; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone, friable.								- -	- - - -	
181	2 -							D/ES		2.00 -	PID - PP	<1ppm >400kPa
-	_									-	-	
				RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pl<>						
180	3 -									- 3 -		
-	_										-	
	•			-						-		
. 6/1	4 -									- 4 -	-	
	-										-	
-		Test Pit discontinued at 4.60m depth. Limit of investigation. No solid rock encountered								-	-	
<u> </u>							P 2 h			Country of	the second second	
							a said the	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second second	and the state of t	the second second	
		Pit 322					1	the state	Spc	pil from	m Pit	t 322
			ty shading i									


METHOD: 600mm Bucket **REMARKS:**

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 185.0 AHD **COORDINATE:** E:303179.1, N:6430252.0 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 323 **DATE:** 12/03/24 SHEET: 1 of 1

				0	DIP/AZ		H: 90°/	_°				SHEET: 1 of 1
		CONDITIONS ENCOUNTERED	,	1	-		SAI	MPLE				TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
<u>م</u>	0.10	TOPSOIL / Silty SAND (SM), with gravel: brown;		TOP	NA	NA NA	ш	D/ES		0.10		<1ppm
	0.40			RS	н	w <pl< td=""><td></td><td>D/ES</td><td>1</td><td>0.30</td><td>PID PP</td><td>lppm >400kPa</td></pl<>		D/ES	1	0.30	PID PP	lppm >400kPa
-	-	Sandy CLAY (CL), with gravel: mottled red brown; low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel.		· - - - -								
184	1.	Sandy CLAY, with gravel: mottled orange brown; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; extremely		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- 1.00 ·</td><td>PID PP</td><td></td></pl<>		D/ES		- 1.00 ·	PID PP	
-	-	weathered pebbly sandstone.								 		
183	2 2.10	-								- 2 -		
-	-	SANDSTONE: pale orange; extremely weathered sandstone, friable.		хwм	н	NA		D/ES	-	- - - 2.50 -	PID	
182	3 -	Test Pit discontinued at 2.70m depth. Limit of investigation. Solid rock encountered							<u> </u>	- 3 -	-	
-										-		
181	4 -									- 4 ·	-	
-	-										-	
									Nº TEL	_	-	
									PIN B	20	The second	
								が行	しいの		All and	
										地方		
		CARLAN CARA					事の					
							The second		THE REAL PROPERTY IN			11
		Pit 323						Ali		pil fro		
		igin is "probable" unless otherwise stated. "Consistency/Relative densit	ty shading i				JE & J R			sive and	granuli	ar materials is implied. LOGGED: Krebs
ГН	OD:	600mm Bucket							-			

CLIENT: Ausgrid **PROJECT:** Proposed Muswellbrook Substation LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW SURFACE LEVEL: 191.4 AHD **COORDINATE:** E:303212.6, N:6430186.6 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 324 **DATE:** 12/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED)				SAN	IPLE				TESTING AND REMARKS
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.30	Clayey SAND (SC), trace gravel: pale brown; fine to medium; fine to medium, sub-angular to sub-rounded gravel; trace organics, rootlets.		RS	NA	w <pl< td=""><td></td><td>D/ES</td><td></td><td>-</td><td>-</td><td><1ppm</td></pl<>		D/ES		-	-	<1ppm
161	-	Sandy CLAY (CL), with gravel: orange brown;		RS	н	w <pl< td=""><td></td><td>D/ES</td><td></td><td>- - 0.50 -</td><td>PID PP</td><td><1ppm >400kPa</td></pl<>		D/ES		- - 0.50 -	PID PP	<1ppm >400kPa
	0.70	low plasticity; fine to medium sand; fine to medium, sub-angular to sub-rounded gravel; extremely weathered pebbly sandstone. Sandy CLAY (CL), with gravel: pale brown; low plasticity; fine to medium sand.						D/ES		- - - 1.00 - - -	PID PID	
061	2 -			XWM	н	w <pl< td=""><td></td><td></td><td></td><td></td><td>- - - - -</td><td></td></pl<>					- - - - -	
		Test Pit discontinued at 2.20m depth. Limit of investigation. Solid rock encountered								-	-	
681	-									 - -	-	
	3 -									- 3 -	-	
188	-									- -	-	
	4 -									- 4 - -	-	
. 481	- - -									- - - - -	- - - -	
<u> </u>												
		Pit 324						F	Spc	oil from	m Pit	2 324
S: (#		gin is "probable" unless otherwise stated. "Consistency/Relative densi T excavator	ity shading i		al reference OPERA			betweer				

REMARKS: D1/SBK @ 0.2m

BOREHOLE LOG

SURFACE LEVEL: COORDINATE: E:303139.5, N:6430182.7 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 218 **DATE:** 07/03/24 SHEET: 1 of 2

			IDITIO		SOIL					ROO	CK					MPL				TESTING
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)		RECOVERY (%)		SPACTURE SPACING (m)	DEFECTS &	REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARK
		Sandy CLAY (CI), trace gravel: orange brown; medium plasticity; fine to coarse sand.		RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>B D U50</td><td></td><td>- 0.10 - - 0.20 - - - - - 0.50 -</td><td>-</td><td></td></pl<>										B D U50		- 0.10 - - 0.20 - - - - - 0.50 -	-	
	0.70	Sandy CLAY (CL), trace gravel: pale brown; low plasticity; fine to medium, rounded to sub-rounded gravel; extremely weathered pebbly sandstone, friable.		XWM	Н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td></td><td>- 0.70 - - - - 1.00 - - -</td><td></td><td>—>600kPa 14,24,25 N=49 —>600kPa</td></pl<>										SPT		- 0.70 - - - - 1.00 - - -		—>600kPa 14,24,25 N=49 —>600kPa
		SANDSTONE: pale brown.																- 1.45 - - - 	PP	—>600kb3
	2.34	2.00m: driller observed increase in resistance indicative of rock SANDSTONE: pale brown with orange brown iron staining		хwм	NA	NA		_ 2.34 -										- - -		
								- 2.80 -	• VL					30m P R, Clay	9, SGH, , RF			- - - - 3 -	- PLT -	—PL(D)=0.05№
	- - -								€.					22-3.31	m: FC T, 45°, PR,			- - - -		—PL(A)=0.1MP ∖PL(D)=0.05M
	•	3.58m-3.66m: carbonate cemented					нw	- 3.58 - - 3.66 -	Н	100	73	Ľ	RF 3.6 RF	= 57m: J = 98m: F	T, 10°, PR, P, SH, PR,			-	- PLT -	—PL(D)=1.3MP
	4 -								L				CI 4.0 CI 4.0	ay, RF 01m : J ay, SM	T, 50°, PR,			- 4 - - -		
	-								•••				- 4.' RF		T, 60°, PR,			 - -		—PL(A)=0.04№ \PL(D)=0.07№
		gin is "probable" unless otherwise stated. ⁽ DMacchio GEO 405	Consisten	cy/Rela	itive dei	nsity sh	ading	is for vi						n cohe	sive and g				plied.	

BOREHOLE LOG

SURFACE LEVEL: COORDINATE: E:303139.5, N:6430182.7 PROJECT No: 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 218 **DATE:** 07/03/24 SHEET: 2 of 2

			CON	DITIO	NS			NTE	REC)								SA	MPL	E			TESTING
						SO							RO	CK									
GROUNDWAIER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS.			WEALD.	DEPTH (m)			RECOVERY (%)	RQD	SPACINE SPACING (m)	DEFECTS &	KEMAKKS SAMDI F	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
		- - - - -	[CONT] SANDSTONE: pale brown with orange brown iron staining								•		100	73			im: P , SN , RF Im : JT, 4 DB?	M, PR,				PLT : PLT	PL(D)=0.14MPa √PL(A)=0.12MPa
		6 -						н	IW		•	L									- 6 - 		— PL(A)=0.13MPa │PL(D)=0.05MPa
		7 -						м	IW	- 6.80 —	•		100	100							- 7 -	_ PLT <u>-</u> PLT -	
		-	From 7.40m: colour becomes grey					F	R	-7.40 -	•										 	- PLT -	— PL(A)=0.12MPa
			Borehole discontinued at 8.30m depth. Limit of investigation.								•											<u>- PLT -</u>	PL(A)=0.12MPa _
		9 -																			- · ·		
IOTE	ES: (#)	- Soil ori	gin is "probable" unless otherwise stated. ¹⁷	Consister	ncy/Re	elative o	densitį	y shadi	ing is	for visu	ual re	eferen	ce only	- no cc	rrelation be	etween	cohesive	and g	ranular	r materi		plied.	
×۲	NT		omacchio GEO 405								OP	PER	ΑΤΟΙ	S: CI	ound T	est				LOG	GED:	Cha	plin

METHOD: SFA to 2.34m, NMLC to 8.3m depth **REMARKS:**

CASING: HWT to 2.3m

SURFACE LEVEL: **COORDINATE:** E:303309.3, N:6430192.6 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 221 **DATE:** 07/03/24 SHEET: 1 of 2

 	CON		NS E	SOIL		ERE	D		ROC	۷			SA	MPL	E			TESTING
^{RL (m)} DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	LL M M M M M M M M M M M M M	RECOVERY (%)			DEFECTS &	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
0.10	SILT (ML), with sand, with gravel: pale brown; low plasticity; fine to medium sand; fine to coarse, sub- angular to sub-rounded gravel.		RS	NA H	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td><td>B</td><td></td><td>- 0.10 - - 0.20 - - 0.30 -</td><td></td><td></td></pl<>								:	B		- 0.10 - - 0.20 - - 0.30 -		
0.50	CLAY (CI), with sand, trace gravel: orange brown; medium plasticity; fine to coarse sand; fine to medium, rounded to sub- rounded gravel.													D U50		- 0.50 - - 0.67 -	- PP -	—>600kPa
- _ - -	Sandy CLAY (CL), with gravel: pale brown pale orange; low plasticity; fine to coarse, rounded to sub- rounded gravel; extremely weathered pebbly sandstone, friable.		XWM	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td></td><td>- 1.00 - - · · · - · · ·</td><td>SPT PP</td><td>7,25/140 —>600kPa</td></pl<>									SPT		- 1.00 - - · · · - · · ·	SPT PP	7,25/140 —>600kPa
-																		
2 -	2.20m: driller observed increase in resistance															- 2 -		
2.20	PEBBLY SANDSTONE: orange brown. 2.50m-2.70m: clast		XWM	NA	NA		- 2.50 -											
-	PEBBLY SANDSTONE: orange brown, fine to coarse grained CORE LOSS: 0.3m	$\overline{\mathbf{N}}$				нw	- 2.70 -					2.50-2' fractur	70m: FC, ed clast					
3.00	PEBBLY SANDSTONE: orange brown, fine to coarse grained						- 3.00 -	м	80	40		RF	JT, 15°, PR, JT, 10°, PR,			- 3 -		
-						ΗW	- 3.40 -	L		10		RF				 	PLT PLT	— PL(A)=0.44M ∖PL(D)=0.4MF
						SEAM	-3.65 - -3.72 -	SEAM	-		SEAM	3.65-3.5 3.80m Fe, RF 3.87m: 56, RF	⁷ 2m: DS JT, SH, PR, JT, 10°, PR,					
4 -	- - -							L				1 3.95m	JT, 45°, IR, .07m : FC 21m: FC			- 4 - - ·		
-						нw	_ 4.40 -	M	100	53		4.69m	P, SH			 		—PL(A)=0.23M ∖PL(D)=0.29M
•									100	62	186	DB? 4.80-4 DB?	.85m FC, : JT, 10° , PR,					

METHOD: SFA to 2.5m, NMLC to 8.50m depth **REMARKS:**

CASING: HWT to 2.5m

PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Creek Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: **COORDINATE:** E:303309.3, N:6430192.6 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 221 DATE: 07/03/24 **SHEET:** 2 of 2

	1		CON		NS			IERE	U			ROO	~~		SA	MPL	E	-		TESTING
GROUNDWATER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)			WEATH.	DEPTH (m)	CTDENCTU		RECOVERY (%)	RQD	# FRACTURE	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARK
<u> </u>			[CONT] PEBBLY SANDSTONE: orange brown, fine to coarse grained	0				SEAM	5.05		AM	100	62	SEAM 5.00m Fe, RF 5.00-5. 5.05-5. 5.05-5. 5.05-5. 5.05-5. 5.05-5. 5.19m Fe, RF	P, SH, PR, 05m : FC 10m: DS P, SH, PR, DB		_	-	-	—PL(A)=0.42M ∖PL(D)=0.22M
		6.										100	59	550-5 563-5: 584m Fe, RF 583-5: 588-6 SV, IR, 6.10m: Fe, RF Fe, RF Fe, RF Fe, RF Fe, RF Fe, RF Fe, RF Fe, RF	JT, SH, IR, 00m: JT, Fe, RF P, 10°, PR, JT, 45°, PR,			- 6 -	-	
		7 -						нw		•	м			Fe, RF 6.42m Fe, RF 6.56m: RF 6.74m TI Fe, F	P, 10°, PR, P, 10°, PR, JT, 15°, IR, P, SH, PR, F					—PL(A)=0.36M ∖PL(D)=0.02N
										•		100	82	— TI Fe, F — 7.79m TI Fe, F	P, 10°, PR,					—PL(A)=0.38N ∖PL(D)=0.04N
		8.	Borehole discontinued at							9				799m TIFe,F 	Л, 15°, IR,			- 8 -	- - - - - - - - - - - - - - - - - - -	
		9.	8.50m depth. Limit of investigation.															- - - - 9 -		
			- - - - -																-	
LA	NT	г: С	igin is "probable" unless otherwise stated. omacchio GEO 405 SFA to 2.5m, NMLC to 8.50			lative de	nsity sl	hading	is for vis					round Test	esive and g		LOG	GED:	Cha	plin to 2.5m

BOREHOLE LOG

SURFACE LEVEL: **COORDINATE:** E:303242.2, N:6430173.2 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 223 **DATE:** 07/03/24 SHEET: 1 of 2

		CON	DITIO				ERE	D		ROC	<u>`</u>		SA	MPL	E		1	TESTING
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)	r ™ TRENGTH	RECOVERY (%)	6	[₩] FRACTURE [№] SPACING [∞] (m) [∞] (m) DEFECTS & REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.50	CLAY, with sand, trace gravel: orange brown; fine to coarse, rounded to sub- rounded gravel. Sandy CLAY (CL), with gravel: pale brown; low plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel; extremely weathered pebbly sandstone, friable.		RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>B D U50 SPT</td><td></td><td>- 0.40 - 0.50 - 0.76 - 1.00</td><td>SPT</td><td>8,25/140</td></pl<>								B D U50 SPT		- 0.40 - 0.50 - 0.76 - 1.00	SPT	8,25/140
	2.00	2.00m: driller observed increase in resistance indicative of rock SANDSTONE (PEBBLY).		XWM		NA										- 1.29 - 		
	1	PEBBLY SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained					HW	-2.56-	• •M	100	67	Fe, RF	JT, SH, PR, : JT, 45°, PR,	SPT		- 2.50 - - 2.56 - - 	PLT	25/60 —PL(D)=0.05M ∖PL(A)=0.37M
	-						JLAM	- 3.20 - - 3.45 -		-		320-3 343m TI Fe, - 3,60m	30m : FC : JT, SH, PR, RF			 		–−PL(A)=0.37MI \PL(D)=0.09M
	4						нw		° ● M	100	95					- 4 -		−PL(D)=0.07M \PL(A)=0.35Mf \PL(D)=0.32Mf \PL(A)=0.34Mf
		jin is "probable" unless otherwise stated. ^{(†} omacchio CEO 405	Consisten	cy/Rela	tive der	nsity sh	ading i	s for vis		-			nesive and g			als is imp		

BOREHOLE LOG

SURFACE LEVEL: **COORDINATE:** E:303242.2, N:6430173.2 **PROJECT No:** 224763.02 DATUM/GRID: MGA2020 Zone 56 **DIP/AZIMUTH:** 90°/---°

LOCATION ID: 223 **DATE:** 07/03/24 SHEET: 2 of 2

ICONTI PEBBLY SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained 6 6		CO	NDITIO	NS			FERE	D				SAMPLE				TESTING				
EXAMPLE TO VEC Example to own on staining. The to coarse grained Image: State of to coarse grained Image: State of to coarse grained Image: State of to coarse grained Image: State of to coarse grained Image: State of to coarse graine Image: State of to c	BEPTH (m)		VPHIC	CIN ^(#)	S. ¹⁷		АТН.	тн (m)	RENGTH				٦ آ	ECTS &	APLE AARKS	ш	ERVAL	лтн (m)	т түре	RESULTS AND REMARKS
EXAMPLE TO VEC Example to own on staining. The to coarse grained Image: State of to coarse grained Image: State of to coarse grained Image: State of to coarse grained Image: State of to coarse grained Image: State of to coarse graine Image: State of to c	DEP		GR∕	ORI		δ	ΝĒ	DEP		REC (%)	RQL	*** FI	U 088	DEF	SAN REN	Τ	IT	DEP	TES	
6 5000 70 0.00 0 <t< td=""><td></td><td>SANDSTONE: pale brown with orange brown iron staining, fine to coarse</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td>5.00m:</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td></t<>		SANDSTONE: pale brown with orange brown iron staining, fine to coarse								100				5.00m:				-	-	
7 -	6 -								•						JT, 10°, PR,					
8 9							нw		-				, , , , , , , , , , , , , , , , , ,	6.61-67- DB?6.83-69				- -		
Borehole discontinued at 835m depth. Limit of investigation.	7 -								•	100	90							- 7 -	PLT -	PL(D)=0.19MI ∖PL(A)=0.39M
Borehole discontinued at PLT VPL(A)=0.3 8.35m depth. Imit of investigation. Limit of investigation. Imit of investigation. 9 Imit of investigation.	8												ul ub	75°, PR,				- 8 -	- - - - - - - -	— PL(D)=0.52M
		8.35m depth.																	PLT	\PL(A)=0.39M
TES: #Soil origin is "probable" unless otherwise stated. "Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.	9 -																	- 9 - - - - - - -		
TES: #Soil origin is "probable" unless otherwise stated. "Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.																		-		
ANT: Comacchio GEO 405 OPERATOR: Ground Test LOGGED: Chaplin			(¹⁾ Consister	ncy/Re	elative de	nsity sł	nading								sive and g					alin

CLIENT:AusgridPROJECT:Proposed Muswellbrook SubstationLOCATION:20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL: COORDINATE: DATUM/GRID: DIP/AZIMUTH: 90°/---° LOCATION ID: 219 PROJECT No: 224763.02 DATE: 04/03/24 SHEET: 1 of 1

Ē		₽	(#) 7	CONSIS. ^(*) DENSITY. ^{(*}	URE	SXS		VAL	(L)	YPE	RESULTS AND
DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	REMARKS
	Sandy CLAY (CI), with gravel: pale orange pale brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel.		RS	VSt to H	w <pl< td=""><td></td><td>D</td><td>\geq</td><td>- 0.10 - - 0.20 -</td><td>-</td><td></td></pl<>		D	\geq	- 0.10 - - 0.20 -	-	
0.30	Sandy CLAY (CL-CI), with gravel: pale orange										
-	pale brown; low to medium plasticity; fine to coarse sand; fine to coarse, rounded to sub- rounded gravel; extremely weathered pebbly sandstone, friable, soil-like properties.									-	
-	sandstone, mable, soli-like properties.								- 0.80 -		
1							D		- 0.90 - - 1.00 -		_
-			XWM	н	w <pl< td=""><td></td><td>0.07</td><td></td><td></td><td></td><td></td></pl<>		0.07				
-							SPT			SPT	12,21,25 N=46
-									- 1.45 -	PP	
-	1.80m: drilling resistance increased indicative									-	
1.80	PEBBLY SANDSTONE.									-	
2 -									- 2 -	-	
-											
_									- 2.50 -		
-							SPT	\leq	- 2.58 -	SPT PP	25/80 (HB) >600kPa
]											
3 -									- 3 -	-	
-										-	
-			хwм							-	
-											
4							CDT		- 4.00 -	-	25/0 (HB)
4							SPT				
1										1	
-										1	
										-	
-	Borehole discontinued at 5.00m depth. Limit of investigation.									+	
	in is "probable" unless otherwise stated. "Consistency/Relative densit omacchio GEO 405	/ shading i				correlation Ground		n cohes	ive and	granula	ar materials is implied. LOGGED: Chaplin

CLIENT:AusgridPROJECT:Proposed Muswellbrook SubstationLOCATION:20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL: COORDINATE: DATUM/GRID: DIP/AZIMUTH: 90°/---° LOCATION ID: 220 PROJECT No: 224763.02 DATE: 04/03/24 SHEET: 1 of 1

		CONDITIONS ENCOUNTERED			<u> </u>		SAN	/PLE				TESTING AND REMARKS
	RL (m) DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	-	FILL / Sandy CLAY (CL), with silt, with gravel: brown; low plasticity; fine to coarse sand; fine		FILL	NA	w <pl< td=""><td></td><td>D</td><td>\langle</td><td>-</td><td>-</td><td></td></pl<>		D	\langle	-	-	
	0.20	to coarse, angular to sub-angular gravel; contains coal fragments, abundant rootlets to 0.1m.		>>>>>						- 0.20 -	-	
	-	Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel.						D	<	- 0.50 -		
]			RS	н	w <pl< td=""><td></td><td></td><td></td><td>- 0.60 -</td><td></td><td></td></pl<>				- 0.60 -		
	1								_	- - 1.00 -	_	
	1.10	Sandy CLAY (CL), with gravel: pale brown pale orange; low plasticity; fine to coarse, rounded						SPT		_	SPT	3,10,18 N=28
	-	to sub-rounded gravel; friable, extremely weathered pebbly sandstone.								-		410kPa ~>600kPa
	-			XWM	Н	w <pl< td=""><td></td><td></td><td></td><td>- 1.45 - </td><td>PP PP</td><td></td></pl<>				- 1.45 - 	PP PP	
	1.80	1.80m: driller observed increase in resistance indicative of rock PEBBLY SANDSTONE.								-	-	
	2 -	FLUET SANDSTONE.								- 2 -	-	
	-			хwм						-	-	
	-									- - 2.50 -		
		Borehole discontinued at 2.60m depth. Limit of investigation.						SPT	\leq	- 2.55 -	SPT	25/50 (HB)
										-	_	
	3 -									- 3 -	-	
	-									-	-	
	-											
	-									-	-	
	4									_ 4 -		
	·									-		
	-									-		
	-										-	
	-									-	-	
		nin is "nrohahla" unless otherwise stated "Consistency (Calative description	(shading !	e for view	al referen	e only	correlation	hetwor) coho-	iveand	grapula	ar materials is implied
100		gin is "probable" unless otherwise stated. ⁽¹⁾ Consistency/Relative densit	y snauing is						- corres	ive and	granula	LOGGED: Chaplin

CLIENT:AusgridPROJECT:Proposed Muswellbrook SubstationLOCATION:20 Sandy Creek Road, Muswellbrook, NSW

SURFACE LEVEL: COORDINATE: DATUM/GRID: DIP/AZIMUTH: 90°/---° LOCATION ID: 222 PROJECT No: 224763.02 DATE: 07/03/24 SHEET: 1 of 1

	BL(m) DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.50	FILL / SILT (ML), with sand, trace gravel: pale brown grey; low plasticity; fine sand; fine to medium, rounded to sub-rounded gravel; possibly ash.	× × × × × × × × × × × × × × × × × × ×	FILL	NA	w <pl< td=""><td></td><td>D</td><td></td><td>- 0.20 - - 0.30 - - 0.30 -</td><td>-</td><td></td></pl<>		D		- 0.20 - - 0.30 - - 0.30 -	-	
	-	CLAY (CI), with sand, trace gravel: red orange; medium plasticity; fine to coarse sand; fine to medium, rounded to sub-rounded gravel.		RS	н	w <pl< td=""><td></td><td>U50</td><td></td><td> </td><td>- PP -</td><td>>400kPa</td></pl<>		U50		 	- PP -	>400kPa
	1.35	Sandy CLAY (CL), with gravel: pale brown pale orange; low plasticity; fine to coarse sand; fine						SPT		 	SPT	10,13,19 N=32 >400kPa —>400kPa
	2 -	or coarse, rounded to sub-rounded gravel; extremely weathered pebbly sandstone.		XWM	н	w <pl< td=""><td></td><td></td><td>• • • • •</td><td></td><td>PP</td><td></td></pl<>			• • • • •		PP	
						Witz		SPT		- 2.50 - - 2.64 -	SPT PP	25/140 \>600kPa
	3.00	PEBBLY SANDSTONE.							- - - - - - - - - - - - - - 	· · ·	-	
	4 -			хwм				SPT			SPT PP	25/100 (HB) >600kPa
	- - - - - - - - - - - - - - - - - - -	Borehole discontinued at 5.00m depth.							•	· · ·	*	
S:	#Soil oric	Limit of investigation. gin is "probable" unless otherwise stated. "Consistency/Relative densi	ty shading i	s for visu	al reference	e only - no	correlation	betweer	ı cohesi	ve and o	granula	r materials is implied.
		macchio GEO 405	cy snaulity i				Ground		. conesi	anu (LOGGED: Chaplin

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 175.8 AHD COORDINATE: E:303147.5, N:6430358.0 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 1 **DATE:** 18/09/23 SHEET: 1 of 2

			CON	IDITIO)		D2				SA	MPL	E			TESTING
RL (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC			MOISTURE	WEATH.	DEPTH (m)		RECOVERY 00 (%) 00	RQD	## FRACTURE ## SPACING ## (m)		SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARK
175	0.0	-	TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse, rounded to sub-rounded gravel.													B U50 U75		- 0.85	- PP -	—400kPa
174	2	2			RS	н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SPT</td><td></td><td>- 1.65</td><td>SPT</td><td>3,10,14 N=24</td></pl<>									SPT		- 1.65	SPT	3,10,14 N=24
173	3															SPT		- 2.50 - - 2.92 - - 3 - 	SPT	10,23,25/120
172	3.4 3.5	52	Pebbly SANDSTONE: brown, highly weathered SANDSTONE: pale brown; with orange brown iron staining	<u> </u>		NA	NA	HW	- 3.52 - - 3:58 =	e L	 100	59	H	> 356-3.5	0m: FC	SPT	\langle	- 3.45 - - 3.52 -		PL(A)=0.27M
-	4	+ + - - -						HW	4.04 - - 4.44 - - 4.48 -	L to M				Clay	IT, 80° /85°, IT/10°, Fe, IT/45°, PR,			- 4 - - · ·	PLT <u>-</u> - - - - - - - - - - - - - - - - - -	\PL(D)=0.2MF
171	Ę	- - - -						HW		C L to M	100	82		4.71m: J RF 4.75m: J RF 4.92m: J TI, RF	IT/10°, PR, IT/45°, PR, IT/10°, PR, IT/10°, PR, IT/15°, PR,			 - 5 - 5.14	= PLT = PLT = PLT = PLT =	—PL(A)=0.28MI √PL(D)=0.25M —PL(D)=0.28M √PL(A)=0.31MI

PLANT: Truck Mounted Drill Rig

METHOD: Solid flight auger to 3.45m, then NMLC coring to 10m depth **REMARKS:**

OPERATOR: Ground Test CASING: HQ to 3.5m

LOGGED: Chaplin

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 175.8 AHD COORDINATE: E:303147.5, N:6430358.0 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 1 DATE: 18/09/23 SHEET: 2 of 2

1			1											MPL	_		1	TESTING
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN(#)	DENSITY.(1)	MOISTURE	WEATH.	DEPTH (m)		RECOVERY 20 (%)		UN FRACTURE	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
170	- - - 6	[CONT] SANDSTONE: pale brown; with orange brown iron staining					HW	- 5.76	VL to L SEAM	100	82	L Clay, R	F JT/50°, PR, F				⊧ PLT = PLT	
169	-						HW		L eto M	100	28	631m PR, Fe 633m Clay, R 640m Fe, RF 654m Fe, RF	JT, 50° /55°, RF JT, 50° /55°, RF P, SH, PR,			- · ·	- - - - - - - - -	—PL(A)=0.39M ∖PL(D)=0.33M
	7 _ - - - -						xw	7.00	VL SEAM VL	100	41	667m Fe, RF 720m 720m Clay, R RF 728m RF 7377 7377. 748m	JT/45°, PR, 00m: FC P, SH, PR, JT/45°, PR,			- 7 -	PLT =	—PL(A)=0.16M ∖PL(D)=0.11M
168	8 _						xw MW SW	- 7.62 - 7.74 - 8.10 8.25 - 8.31	SEAM M	-		RF 7.49m: RF 7.62-7:	JT/50°, PR, 74m: CS			- 8 -	= PLT = PLT = PLT = PLT =	PL(D)=0.32M \PL(A)=0.32M PL(A)=0.47M \PL(D)=0.26M
167	- - - - 9 _ -						FR		н	100	100			UCS			PLT =	
- - - - - - - - - - - - - - - - - - -	- - - - - 10.00	Borehole discontinued at 10.00m															-	
		depth. Limit of investigation.																

METHOD: Solid flight auger to 3.45m, then NMLC coring to 10m depth CASING: HQ to 3.5m REMARKS:

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 183.7 AHD COORDINATE: E:303203.9, N:6430265.9 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 10 PROJECT No: 224763.00 DATE: 22/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING ROCK SOIL CONSIS.(') DENSITY.(') STRENGTH DEFECTS & REMARKS RESULTS GROUNDWATER SAMPLE REMARKS **TYPE** RECOVERY DEPTH (m) MOISTURE DEPTH (m) DEPTH (m) AND NTERVAL GRAPHIC **ORIGIN**(#) WEATH. REMARKS DESCRIPTION TYPE RQD OF RL (m) % STRATA 0.03 No free groundwater observed TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse, rounded to sub-rounded gravel. 183 w<PL н RS 1 1.00 SPT 12,30 >400kPa 1 15 SPT PP -8 1.85 CORE LOSS 2.00 2 SANDSTONE: pale brown with VL 2.00-2.22m: FC HW orange brown iron staining, fine to coarse grained; pebbly PLT XW SOIL 2.36 ---PL(D)=0.06MPa HW lЬ VI PI T XW SOIL -20 2.73 HW VL - 2.81 - 2.86 > 2.81-2.86m: CS SEAM VL XW HW 2.92 2.96 2.92-2.96m: CS SEAM VI XW 3 3 VL VL SEAM VL 3.83 > 3.01-3.03m; CS ____PL(D)=0.03MPa _____PL(A)=0.07MPa HW PLT - 3.09 93 36 > 3.09-3.13m: CS PLT HW 3.20 3.24 SEAM L > 320-3.24m: CS HW 3:33 > 3.31-3.33m: CS SEAM XW 3.37-3.42m: CS Π 3.42 ij HW L PL(D)=0.11MPa PL(A)=0.12MPa PLT 3.58 3.58-3.60m: CS PLT H 180 3.88m: P, SH, PR, Fe, RF Generated with CORE-GS by Geroc - Combined Log - 16/10/2023 11:09:04 AM L 4 4 HW 4.32 4.40m: P, SH, PR, Fe, RF to M PLT -PL(A)=0.33MPa 4 44 PL(D)=0.27MPa PLT XW SEAM 44-4.80m: CS 179 1.80 нw L 100 84 5.00m: P, SH, PR, Fe, RF PLT -PL(D)=0.27MPa 5 5 5.01 PL(A)=0.25MPa PLT MW 5 26 From 5.26m: becomes grey ï sw in colour Consistency/Relative density shading is for nd granular materials is implie NOTES: Soil origin is "probable" unless otherwise state visual refer

PLANT: Truck Mounted Drill Rig

METHOD: Solid flight auger to 1.85m, then NMLC to 10m depth **REMARKS:**

OPERATOR: Ground Test CASING: HQ to 1.85m

LOGGED: Chaplin

CLIENT: Ausgrid PROJECT:

Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 183.7 AHD COORDINATE: E:303203.9, N:6430265.9 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 10 DATE: 22/09/23 SHEET: 2 of 2

DESCRIPTION OF STRATA [CONT] SANDSTONE: pale	GRAPHIC						H		ROC	ĸ	Ш.,						RESULTS
	GR/	ORIGIN(#)		MOISTURE	WEATH.	DEPTH (m)			KELUVERY (%)	RQD	Beffectors & Beffe	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
brown with orange brown iron staining, fine to coarse grained; pebbly					SW	- 5.68	¥				564m: UN,Fe 602m: Fe,RF	JT, 15° <i>1</i> 20°, RF				= PLT = PLT	—PL(D)=0.47MPa ॓PL(A)=0.43MPa
					FR		8		100	84	– 7.17m PR, RF	JT, 10° /15°,				- PLT - PLT - - - - - - - - - - - - - - - - - - -	PL(D)=0.36MP PL(A)=0.58MP PL(A)=0.43MP PL(D)=0.27MP
					MW	- 7.85	м	I			795m Fe, RF 802m Fe, RF					-	
					FR		0		100	96						- PLT <u>-</u> PLT -	—PL(A)=0.58MF ∖PL(D)=0.28MF
Borehole discontinued at 10.00m depth. Limit of investigation.							8									- - - - - - - - - - - - - - - - - - -	—PL(A)=0.66MP [\] PL(D)=0.7MPa
c	lepth.	lepth.	lepth.	lepth.	lepth.	FR FR FR FR FR FR FR FR FR FR FR FR FR F	FR 0.28 FR 7.85 MW 8.10 FR 10 FR	Porehole discontinued at 10.00m	Porehole discontinued at 10.00m	Porchole discontinued at 10.00m	FR 6.28 FR 100 96 FR 100 96 FR 10 96 FR 10 96	MW 0.28 0.4 0.4 0.07 0.10 0.4 FR 0	MW 0 0 84 0 0 93 FR 0 0 84 0 0 73% MW 0 0 84 0 0 73% FR 0 0 94 0 0 73% MW 0.0 0 96 0 0 73% FR 0 0 96 0 0 96 FR 0 0 96 0 0 100 FR 0 0 96 0 0 0 FR 0 0 96 0 0 0	MW 0	MW -	MW 100 64 500 P. SH, UN. - - 0 FR 100 64 - - - - - FR -	MW 100 84 000000000000000000000000000000000000

METHOD: Solid flight auger to 1.85m, then NMLC to 10m depth REMARKS:

CASING: HQ to 1.85m

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT:

PROJECT:

Ausgrid

Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 183.7 AHD **COORDINATE:** E:303263.9, N:6430265.4 **DATUM/GRID:** MGA2020 56 **DIP/AZIMUTH:** 90°/---° LOCATION ID: 11 PROJECT No: 224763.00 DATE: 25/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING ROCK SOIL CONSIS.(') DENSITY.(') STRENGTH DEFECTS & REMARKS RESULTS GROUNDWATER SAMPLE REMARKS **TYPE** RECOVERY DEPTH (m) MOISTURE DEPTH (m) DEPTH (m) AND NTERVAL GRAPHIC **ORIGIN**(#) WEATH. REMARKS DESCRIPTION ТҮРЕ RQD OF RL (m) % STRATA 0.03 No free groundwater observed TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to subrounded gravel. 183 1 1.00 w<PL SPT SPT 25/140 н RS ~>400kPa 1 14 PP 182 2.10m: increase in drilling 2 2 resistance indicative of rock 2.16 2.16 SANDSTONE: pale brown with нw VL orange brown iron staining, fine to coarse grained; pebbly <u>2:39</u> 2.39-2.42m: CS -PL(A)=0.04MPa PLT НW VL 2.61 -15 xw 2.61-2.77m: CS 2.77 HW PLT -PL(A)=0.13MPa L to PLT MW 2.98 3 3 VI 3.05 XW 3.05-3.13m: CS 5 - 3.13 55 100 MW L -PL(D)=0.17MPa PLT - 3.51 -- 3.55 -3.51-3.55m: CS XW PL(A)=0.27MPa PLT -8 L Generated with CORE-GS by Geroc - Combined Log - 16/10/2023 11:09:09 AM 3.95m: JT/45°, PR, Fe, RF 4 4 PI T PL(A)=0.22MPa \PL(D)=0.21MPa PLT 4.18 VL 4.32 4.41m: P, SH, PR, RF нw 179 PL(A)=0.4MPa PL(D)=0.45MPa PLT PLT 100 100 5 5 524m: JT/45°, CU, Fe. RF 5.41m: JT/80°, PR, TI Fe, RF (*)Consistency/Relative density shading is for visual reference granular materials is impli NOTES: Soil origin is "probable" unless otherwise stated. LOGGED: Chaplin PLANT: Truck Mounted Drill Rig **OPERATOR:** Ground Test METHOD: CASING: HQ to 2m **REMARKS:**

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 183.7 AHD COORDINATE: E:303263.9, N:6430265.4 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 11 DATE: 25/09/23 SHEET: 2 of 2

	1		CO	NDITIO	NS			ERE	D			<u></u>				SA	MPL	E			TESTING
ATER		(E		U	(#				(m)	NGTH	RV		TURE		s s KS	, sy		AL	(E	PE	RESULT AND
GROUNDWALEK	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)		RECOVERY	RQD		()	DEFECTS & Remarks	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	REMARK
	178	6	[CONT] SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained; pebbly					HW	5.91 -	H				11 1 11 1 11 1 11 1 11 1 11 1 11 1 11	5.64m: J TI Fe, RF	T/85°, PR,			-	= PLT = PLT	PL(D)=1.9MP PL(A)=1.6MP
	-	6 -							- 6.35 -	P		100			_ 6.37m: P Fe, RF	, SH, PR,			- 6 - - - -	= PLT = PLT	—PL(D)=0.72M │PL(A)=0.54M
•		7 -	-							0•									- - - - 7 -	= PLT = PLT	PL(A)=2.2MF ∖PL(D)=1MPa
•	-									н									- - - -	PLT -	—PL(D)=1.8MF ∖PL(A)=1.4MF
•	176	8 -						HW		•	100	100							- - - - 8 -	= PLT = PLT	—PL(A)=1.7MF ∖PL(D)=1MPa
	175							to MW	8.23 - 8.39 -	VH ⁴	>								- - 	- PLT -	—PL(D)=5.5MF
	-	9 -	-																- - - 9 -	-	
•	174									н	100	100			_ 9.52m: J TI Fe, RF	T/45°, PR,			- - -	-	
		10.00	Borehole discontinued at 10.00m							o									- 10 -	- PLT -	—PL(D)=1.2MF
			depth. - Limit of invesitgation. -																-		
			-																-	-	
			ا jin is "probable" unless otherwise stated. (')Consi ruck Mounted Drill Rig	istency/Rela	ative de	ensity sha	ding is fo	or visual	referen				en cohesi ound 7			materials is			GED:	Char	lin

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 183.3 AHD COORDINATE: E:303325.8, N:6430257.4 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 12 DATE: 19/09/23 SHEET: 1 of 1

	_		1									
RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^{#)}	CONSIS. ^(*)	MOISTURE	REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
	0.15	FILL / Gravelly SILT (ML), with clay: brown; low plasticity; fine to coarse, angular to sub-angular	× × × × ×	FILL	NA	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pl<>						
183		gravel; trace ash. FILL / Clayey GRAVEL (GC), with silt: black; fine to medium, angular to sub-angular; possibly contains trace bituminous material.	0101 = 010 1010 = 00 - 0101 = 010 1010 = 00 - 0101 = 010 100 = 00 - 0101 = 010 00 00 - 0100 = 00 00 00	FILL	NA	D				- ·	-	
-	0.55	Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to sub-rounded gravel.						В		- 0.55 - -		
	1.						U75 /	U50		- 1.00 - - 1.05 -		
182								SPT		- 1.26 -		>400kPa 4,14,20 N=34
		-								- 1.71 -	PP	—>400kPa
	2 .									- 2 -		
181				RS	н	w <pl< td=""><td></td><td></td><td></td><td>- 2.50 -</td><td></td><td></td></pl<>				- 2.50 -		
-		-						SPT			SPT	7,12,17 N=29
	3.									- 2.95 - - 3 -	PP	>400kPa
180		-										
		3.90m: increase in drill resistance indicative of										
	3.90 4 -	rock SANDSTONE, highly weathered pebbly			VL	NA		SPT		- 4.00 - 	SPT	4,25/70
179	4.22	Borehole discontinued at 4.22m depth. TC bit refusal.		<u> </u>	10			<u> </u>		- 4.22 - 		1
		-										
		jin is "probable" unless otherwise stated. ^(*) Consistency/Relative density shading ruck Mounted Drill Rig) is for visual				etween cohesiv		anular m	aterials i		LOGGED: Chaplin

SURFACE LEVEL: 185.1 AHD COORDINATE: E:303325.7, N:6430211.1 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 13 PROJECT No: 224763.00 DATE: 26/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING ROCK SOIL CONSIS.(') DENSITY.(') STRENGTH DEFECTS & REMARKS RESULTS GROUNDWATER SAMPLE REMARKS **TYPE** RECOVERY DEPTH (m) MOISTURE DEPTH (m) DEPTH (m) AND NTERVAL GRAPHIC **ORIGIN**(#) WEATH. REMARKS DESCRIPTION ТҮРЕ RQD OF RL (m) % STRATA 0.03 No free groundwater observed TOPSOIL, silt and organics, 185 dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse, w<PL н rounded to sub-rounded 0.50 gravel. U50 PP ->400kPa 0.65 1 1.00 -25 w=PL VSt SPT 4.6.8 N=12 SPT -320-360kPa 1.45 PP RS 2 2 -8 2.50 w<PL н SPT SPT 9,20,25/100 >400kPa 2.90 PP 3 3 <u>8</u> 3.50 SANDSTONE: extremely weathered to highly weathered, very low strength 3.50m: increase in drill resistance indicative of rock Generated with CORE-GS by Geroc - Combined Log - 16/10/2023 11:09:19 AM NA NA 4 4.00 SPT SPT 25/140 -55 4.14 4.30 4.30 4.35 4.39 4.33-4.35m: CS SANDSTONE: pale brown with 30 - Wi orange brown iron staining, XW SEAM 4.39-4.53m: CS fine to coarse grained; pebbly PI T --PL(A)=0.09MPa нw VI 100 0 4.58m: P, SH, PR, Clay, SM 4 69 xw SEAM 4.69-4.75m: CS - 4.75 - 4.81 HW VL XW SEAM 4.81-5.07m: CS 5 ii 5 PLT -PL(D)=0.03MPa 5 07 180 [\]PL(A)=0.1MPa PLT 523m: JT/15°, PR, Fe, SM 100 12 HW VL 5.39-5.41m: FC NOTES: "Soil origin is "probable" unless otherwise stated. (")Consistency/Relative density shading is for visual refer nd granular materials is implie LOGGED: Chaplin PLANT: Truck Mounted Drill Rig **OPERATOR:** Ground Test METHOD: CASING: HQ to 4.1m

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 185.1 AHD COORDINATE: E:303325.7, N:6430211.1 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 13 DATE: 26/09/23 SHEET: 2 of 2

			CON	IDITIO	NS	ENCO SOIL		EREI	D		ROO	.K		SA	MPL	E			TESTING
	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)	L L M STRENGTH	RECOVERY (%)		#FRACTURE #SSPACING #SSPACING #SSPACING #S	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT: AND REMARK
-	- - -	6 -	[CONT] SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained; pebbly							•	_			n: P, SH, PR,				- PLT - PLT -	—PL(D)=0.19MI ─PL(A)=0.09MI
	179	0 -								o ●VL				3.25m: FC			-	= PLT <u>=</u> - PLT	PL(A)=0.27M √PL(D)=0.08M
-	-		-							o	100	12	I II II II Fe. R	n: P, SH, PR, F			 - -	- - PLT -	—PL(D)=0.07M
-	178	7 -							6.92 -	•			Fe, R 7.13n Fe, R 11 1 1 7 7.22n PR, F	n: P, SH, PR, F n: JT, 55°/60°, re, RF			- 7 -	PLT <u>=</u> PLT <u>=</u>	—PL(D)=0.1MF √PL(A)=0.23M
-	-		- - - -					нw		•			736n Ti Fe 742n RF 746n RF 7.60-	n: JT/80°, PR, ,RF n: P, SH, PR, n: P, SH, PR, 7.65m: FC, Fe			 	PLT <u>-</u> PLT	—PL(D)=0.35M │PL(A)=0.21M
-	177	8 -	- - - -										7.98n Ti Cla 8.04n Fe, R	n: JT/60°, PR, ay, SM n: JT/10°, PR, F			- 8 - - 8 -	-	
-	-		-							8	100	91	11 11 11 11 TI, RI	n: JT/80°, PR, ⁻ , HE			 - -	- - PLT <u>-</u> - PLT	—PL(A)=0.15M √PL(D)=0.14M
-	176	9 -								•			921n 929n 929n PR, 1 945n Fe, R	n: JT, 50°/55°, TFe, SM, HE n: P, SH, PR,			- 9 - - - - -	- - PLT = - -	PL(A)=0.19M PL(D)=0.14M
-	- - - -	10.00	Borehole discontinued at 10.00m										986n	n: P, SH, PR, F			- - - - 10 -	-	
			depth. Limit of investigation.														- - - 	-	
DTES	S: ^(#) S	Soil ori	jin is "probable" unless otherwise stated. ("Consi	stency/Rela	ative de	ensity shad	ding is f	or visual	I referen	ce only - no	correlatio	n betwe	en cohesive and granu	lar materials is	implied		-	-	
A		: T	ruck Mounted Drill Rig	Mency/Rela	ave de	snaty snat	ang is ti	usual	, releren		ATOR	: Gr	ound Test	iai materiais is			GED:	Chap	blin

Douglas Partners Geotechnics | Environment | Groundwater

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 188.2 AHD COORDINATE: E:303255.3, N:6430213.3 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 14 DATE: 26/09/23 SHEET: 1 of 2

			CO	NDITIO	NS E			ERED)							SA	MPLI	E			TESTING
						SOIL				_	R					-					
PI (m)	KL (III)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		MOISTURE	WEATH.	DEPTH (m)		RECOVERY	(%)	RQD	FRACTURE Second (m)	DEFECTS & REMARKS	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
	6	2.03 - - - - - - - - - - - - - - - - - - -	TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse, rounded to sub-rounded gravel.		RS	Н	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U50 SPT</td><td></td><td>- 0.50</td><td></td><td>—>400kPa 12,19,17 N=36 —>400kPa</td></pl<>										U50 SPT		- 0.50		—>400kPa 12,19,17 N=36 —>400kPa
145	2	2 2.66 3 3.07 3.15	SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained CORE LOSS SANDSTONE: pale brown with					HW XW HW	2.66 - - 2.86 - - 2.96 - - 3.07 - - 3.15 -	VL SEAI VL	1	00	0				SPT		- 2 -	SPT	24,25/10 (HB)
184	ţ	4	orange brown iron staining, fine to coarse grained					HW		э 9	Ş	97	92		370m. Fe, RF	JT/10°, PR,	UCS		- 3.40 - - 3.61 - 	PLT	—PL(A)=0.36M ↓PL(D)=0.32M —PL(D)=0.31M ↓PL(A)=0.38M
183	22	5	5.19m-5.27m: clast							•				L	Fe, RF 4.90m: . Fe, RF	JT/10°, PR, JT/10°, PR, P, SH, PR,					—PL(D)=0.31M ∖PL(A)=0.5MP

PLANT: Truck Mounted Drill Rig

METHOD: Solid flight auger to 2.66m, then NMLC coring to 10m depth **REMARKS**:

OPERATOR: Ground Test CASING: HQ to 2.66m

LOGGED: Chaplin

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 188.2 AHD COORDINATE: E:303255.3, N:6430213.3 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 14 DATE: 26/09/23 SHEET: 2 of 2

	CON	IDITIO	NS I)					SA	MPL	E			TESTING
RL (m) DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	MOISTURE	WEATH.	DEPTH (m)	H H M STRENGTH	RECOVERY 20	RQD	** FRACTURE ************************************	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULT: AND REMARK
- 6	[CONT] SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained						е 8	97	92	- 575m - Fe,RF > 581-5.	JT/60°, PR, 86m: FC P, SH, PR,				PLT	—PL(D)=0.95Mi PL(A)=0.92Mf —PL(A)=0.97Mf PL(D)=0.94Mf
-7-						7.69	٥	100	96	– 678m TIFe,f – 741m Fe,RF	JT80°, PR, F, HE P, SH, PR,			- 7 -	- - - PLT -	PL(D)=0.9MP
- 8					HW	8.05 -	H to VH	_				UCS		- 7.96 -	PLT <u>=</u> PLT	—PL(D)=3.1MP ∖PL(A)=2.7MP
- 6	8.81m-9.00m: clast						M	100	100	- 881m: Fe,RF	JT&0°, PR, JT45°, PR,			- 9 -		—PL(D)=0.42M ∖PL(A)=0.37M
10.00	Borehole discontinued at 10.00m depth. Limit of investigation.										JT/10°, PR,			- 10 -		

METHOD: Solid flight auger to 2.66m, then NMLC coring to 10m depth CASING: HQ to 2.66m **REMARKS:**

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT:

PROJECT:

Ausgrid

Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 188.5 AHD COORDINATE: E:303165.7, N:6430215.6 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 15 DATE: 02/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING ROCK SOIL CONSIS.(') DENSITY.(') STRENGTH DEFECTS & REMARKS RESULTS GROUNDWATER SAMPLE REMARKS **TYPE** RECOVERY MOISTURE DEPTH (m) DEPTH (m) Ξ AND NTERVAL GRAPHIC **ORIGIN**(#) DEPTH (WEATH. REMARKS DESCRIPTION ТҮРЕ RQD OF RL (m) % STRATA 0.03 free groundwater observed TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; VSt to H fine to coarse, rounded to subw<PI -8 D 0.50 RS rounded gravel. å 1.00 1.00 Sandy CLAY, with gravel: orange brown; medium SPT 15.25/140 SPT plasticity; fine to coarse sand; >400kPa fine to coarse, rounded to sub-1.29 PP rounded gravel. 187 w<PL XWM to 2 2 -8 2.57 SPT SPT _25/70 __>400kPa 2.57 Ľ SANDSTONE: pale brown with 2.63-2.74m: FC orange brown iron staining, fine to coarse grained; pebbly нw VL 3 3 XW SEAM 2.95-3.07m: CS 11 11 3.07 185 PI T -PL(A)=0.03MPa HW VL [\]PL(D)=0.04MPa PLT 3.56-3.63m; FC 100 22 3.85m: JT x2, SV, UN, TI Clay, RF, extends from 3.63m to 4.03m Generated with CORE-GS by Geroc - Combined Log - 16/10/2023 11:09:30 AM 4 4 4.03 xw SEAM 4.03-4.31m: CS —PL(A)=0.22MPa ∖PL(D)=0.25MPa PLT -12 нw ī. PLT 4.80 CORE LOSS 5 5 62 62 5.25 5.25 SANDSTONE: pale brown with ii H orange brown iron staining, нw 5.40 fine to coarse ⁹Soil origin is "probable" unless oth stency/Relative density shading is for visual refer granular materials is implie NOTES OPERATOR: Ground Test LOGGED: Chaplin PLANT: Truck Mounted Drill Rig METHOD: CASING: HQ to 2.5m **REMARKS:**

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

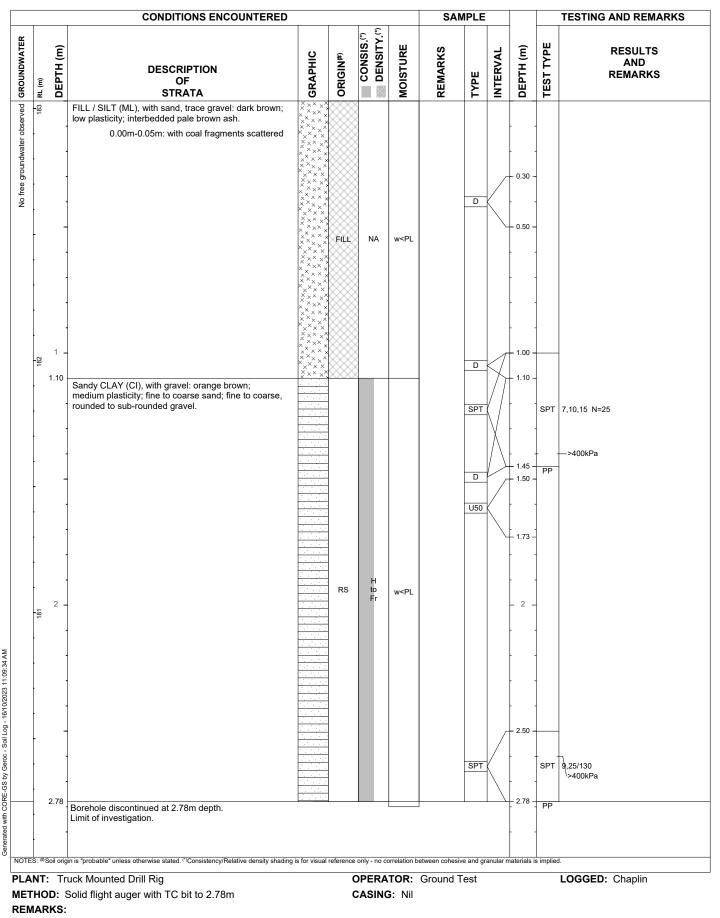
SURFACE LEVEL: 188.5 AHD COORDINATE: E:303165.7, N:6430215.6 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

BOREHOLE LOG

LOCATION ID: 15 DATE: 02/09/23 SHEET: 2 of 2

			CON	DITIO	NS I			ERE	D								SA	MPL	E			TESTING
1	4L (M)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS.(*) SENSITY.(*)	MOISTURE	WEATH.	DEPTH (m)			(%) 000 000 000 000 000 000 000 000 000 0	RQD X	E SPACINE SPACING SPACING SPACING	DEFECTS &	REMARKS	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULT: AND REMARK
			grained; pebbly					HW			<u></u>							UCS	17			
ļ								MW	- 5.81	€M		62	62							- 5.75 - -	PLT : PLT	PL(A)=0.34M
ţ		6.03	CORE LOSS	\succ				\succ	- 6.03 -	>	\leq	_			4					6 -	PLT ·	
		6.12	SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained; pebbly					MW	- 6.12 - - 6.21			75	0		6 	.30m: J F, exte	6m: FC IT, SV, UN, ends from			-	-	
187	701	-	6.50m: colour becomes grey												6 6	26m to	o 6.35m P, SH, PR,				-	
		•								8										-	E PLT :	PL(A)=0.55M PL(D)=0.42M
ŀ		7 _								8										- 7 -		PL(A)=0.31M
												100	100								PLT	[\] PL(D)=0.4MF
-185	0	-																		 - -	-	
		8 –								8										- 8 -		PL(D)=0.56N
								FR		м											PLT	\PL(A)=0.53№
180	100									•										 	PLT : PLT	PL(D)=0.56N PL(A)=0.31N
		9 _																		- 9 -		
										8		100	100								PLT : PLT	PL(A)=0.4MF PL(D)=0.34N
170	0.1	-								*											L .	
															9	.87m: J e, RF	IT/70°, PR,			-	PLT PLT	PL(A)=0.51W
ł	1	10.00	Borehole discontinued at 10.00m depth.													.,				10 -	-	
			Limit of investigation.																	-	-	
		-																			-	
			in is "probable" unless otherwise stated. (")Consis	stency/Rela	ative de	ensity shad	ding is f	or visual								ranular	materials is				<u> </u>	
AN ETH			uck Mounted Drill Rig							OPE CAS				ound Te 2 5m	est				LÜG	GED:	Cha	olin

CASING: HQ to 2.5m


Douglas Partners Geotechnics | Environment | Groundwater

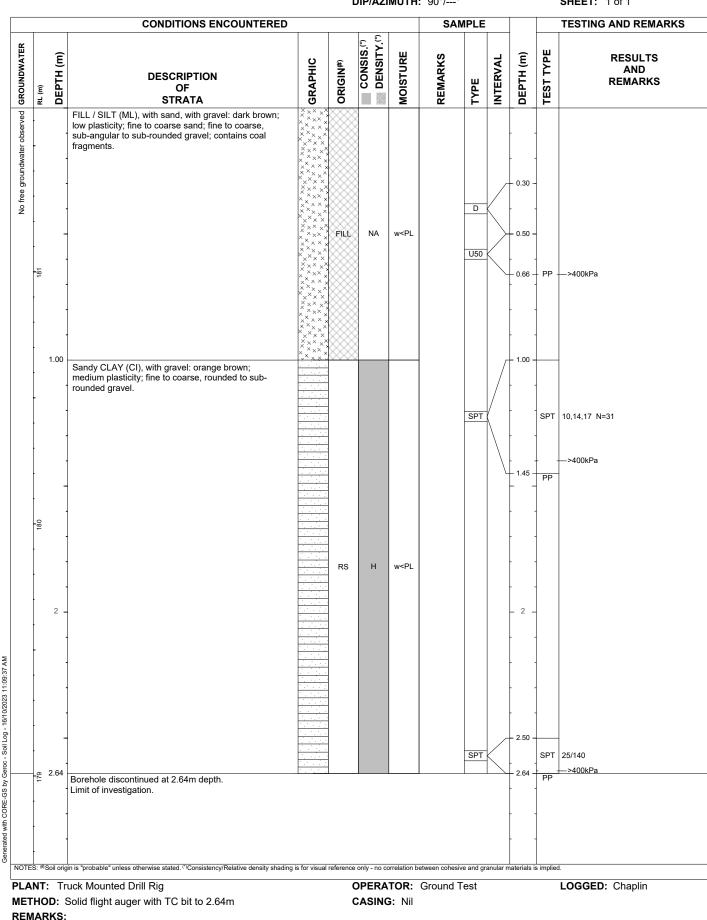
CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 183.0 AHD COORDINATE: E:303255.0, N:6430281.0 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 16 DATE: 27/09/23 SHEET: 1 of 1

CLIENT:


Ausgrid

PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 181.7 AHD COORDINATE: E:303255.2, N:6430296.0 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 17 DATE: 27/09/23 SHEET: 1 of 1

Ausgrid

PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 174.5 AHD COORDINATE: E:303202.2, N:6430360.5 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 2 DATE: 21/09/23 SHEET: 1 of 2

		_	CON		NS E			ERED)		ROC	· K		SA	MPLI	E			TESTING
RL (m)			DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	DENSITY.(1)	MOISTURE	WEATH.	DEPTH (m)	LL M M VH	RECOVERY (%)		We FRACTURE We SPACING We make the matter of the matter	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARK
174	0.0	r r r	TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown mottled grey; medium plasticity; fine to medium sand; fine to coarse, angular to sub-angular gravel.		RS possibly XWM	H to Fr	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U50 SPT</td><td></td><td></td><td>- PP</td><td>—>400kPa 9,12,19 N=31</td></pl<>								U50 SPT			- PP	—>400kPa 9,12,19 N=31
173	2 2.0	5	1.93m: increase in drill resistance indicative of rock SANDSTONE: pale brown with					HW	2.05 -					JT/45°, PR,			- 1.45 - 	PP	—>400kPa
172	3		orange brown iron staining, fine to coarse grained; pebbly					HW XW HW	- 2.49 - - 2.55 - - 2.66 2.80 -	• QL to M SEAM L to M			2:10-2 2:20m Fe, Rf 2:35-2 2:41m 2:49-2	12m: CS P, SH, PR, P, SH, PR, 38m: FC P, SH, PR, 55m: CS P, SH, PR,				PLT	-PL(A)=0.18M PL(D)=0.61N -PL(D)=0.26M PL(A)=0.44M
1 121	2									0.	100	67	322m Fe,RF 	P, SH, PR, RF P, SH, PR,	UCS		- 3	PLT = PLT	−PL(D)=0.46M PL(A)=0.75M
170	4							HW to MW		°, M			4.08m Fe, Rf	P, SH, PR, JT/10°, PR,			- 4 - 	PLT	−PL(D)=0.34M \PL(A)=0.64M
-	5									8	100	97	Fe, RF	JT/10°, PR,				PLT	PL(A)=1.2MF PL(D)=0.85M PL(A)=0.89M PL(D)=1.1MF

METHOD: Solid flight auger to 2.05m, then NMLC coring to 10m depth CASING: HQ to 2m REMARKS:

CLIENT:

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

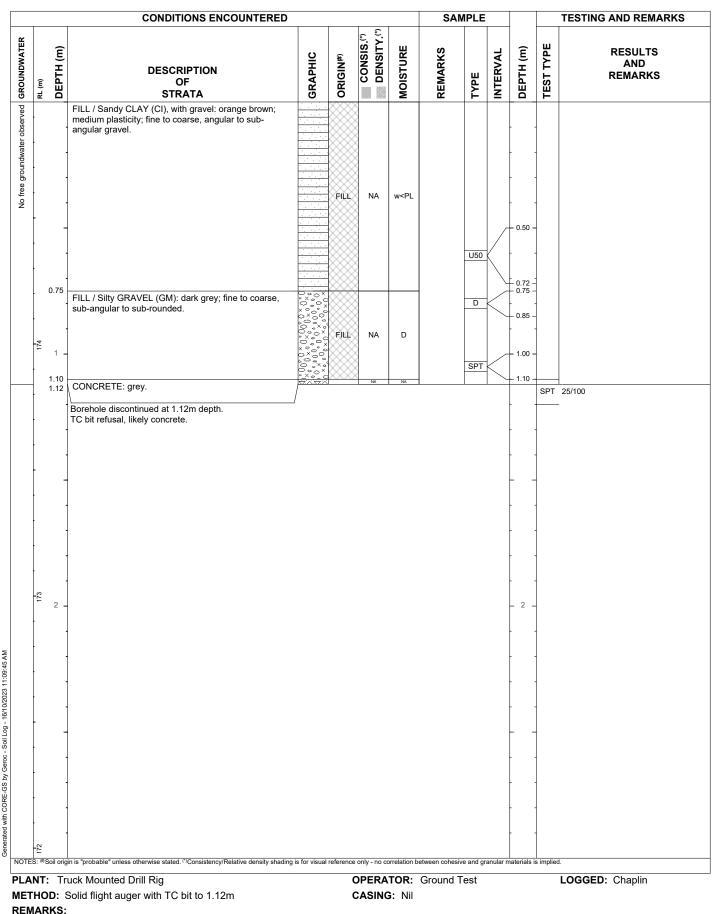
BOREHOLE LOG

SURFACE LEVEL: 174.5 AHD COORDINATE: E:303202.2, N:6430360.5 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 2 DATE: 21/09/23 SHEET: 2 of 2

				CON	IDITIO	NSE			EREC	נ			<u></u>			SA	MPL	Ĕ			TESTING
	9 RL (m)		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN(#)		MOISTURE	WEATH.	DEPTH (m)		RECOVERY B	RQD X	Event Fracture Spacing (m)	LEFECTS & REMARKS	SAMPLE REMARKS	түре	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARM
ļ	169		1	[CONT] SANDSTONE: pale brown with orange brown iron					нw	- 5.67 -	L				5.54m: P RF						
				staining, fine to coarse grained; pebbly					XW HW	- 5.76 - 5:83 -	L				5.67-5.76 5.86m: P						
		6							мw						Fe, RF 6.00m: P				- 6 -		
ļ				From 6.09m: becomes grey					sw	- 6.09					RF						
			1	in colour					500	- 6.29	8			;; ;; 1 ; ;[629m: P RF	, SH, PR,				PLT -	PL(D)=0.84M √PL(A)=0.94M
	168		1																		
	-16														6.71m: P	.SH.PR.					
												100	97		RF	,,					
		7	,]												7.01m: J [*] RF	r/15°, PR,			- 7 -		
											м				ĸŗ						
			+																		
	167		-								•				7.53m: J	Г/35°, PR,			7.52 =		PL(D)=0.47N
	-		1												RF		UCS			PLT	\PL(A)=0.93M
ļ			+															\mathbb{N}	- 7.87 -		
	-	8	3 -																- 8 -		
			1						FR												
			+								•									PLT -	PL(D)=0.29N
	166		-							8.55 -										PLT	[\] PL(A)=0.87M
			1												8.61m: P RF	, SH, PR,					
															8.91m: J [*]	r/20°, PR,					
ļ	-	ę	-									100	100		SM				- 9 -		
			1																		
			1								н										
	165		+																	PLT -	PL(D)=1.3MF
			1																	PLT	[\] PL(A)=1.4MF
	•																				
		10		Borehole discontinued at 10.00m															- 10 -		
			1	depth. Limit of investigation.															-		
			1																		
			+																		
			1																[.		
			1																		
		Soil	origi	n is "probable" unless otherwise stated. (")Consis	stency/Rela	ativo do	neity char	dina is f	ar vievel				on hotu	oon cohosiwa and	gropulor	natoriale is	implied				

METHOD: Solid flight auger to 2.05m, then NMLC coring to 10m depth CASING: HQ to 2m REMARKS:



CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 175.0 AHD COORDINATE: E:303262.7, N:6430363.5 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 3 DATE: 21/09/23 SHEET: 1 of 1

SURFACE LEVEL: 176.5 AHD COORDINATE: E:303317.6, N:6430366.0 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 4 DATE: 21/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING ROCK SOIL CONSIS.(') DENSITY.(') STRENGTH DEFECTS & REMARKS RESULTS No free groundwater observed GROUNDWATER SAMPLE REMARKS **TYPE** RECOVERY MOISTURE DEPTH (m) DEPTH (m) DEPTH (m) AND NTERVAL GRAPHIC **ORIGIN**(#) WEATH. REMARKS DESCRIPTION ТҮРЕ RQD OF RL (m) % STRATA 0.03 TOPSOIL, silt and organics, dry Sandy CLAY (CI), trace gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to sub-0.50 rounded gravel. 176 U50 PP ->400kPa 0.68 1 1.00 SPT SPT 16.23.23 N=46 >400kPa 1.45 PP 175 2 2 w<PL н RS 2.50 174 SPT SPT 16 23 24 N=47 >400kPa 2.95 PP 3 13 4 4.00 SPT SPT 15,25/140 ->400kPa 4.29 PP 4.60m: increase in drill resistance indicative of rock 172 4 66 SANDSTONE: brown with 4.70-4.75m: FC orange brown iron staining, fine to coarse grained; pebbly 4.81-4.88m; FC -PL(D)=3.5MPa PLT НW VH 100 34 4.94-5.00m: FC 5 5.00 UCS 521m: JT/15°, PR, Fe, RF 5.22 5.27 CORE LOSS 0 0 and granular materials is implie NOTES Soil origin is "probable" unless otherwise stated stency/Relative density shading is for

PLANT: Truck Mounted Drill Rig

METHOD: Solid flight auger to 4.66m, then NMLC coring to 10m depth **REMARKS:**

OPERATOR: Ground Test CASING: HQ to 4.5m

LOGGED: Chaplin

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG SURFACE LEVEL: 176.5 AHD COORDINATE: E:303317.6, N:6430366.0 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56

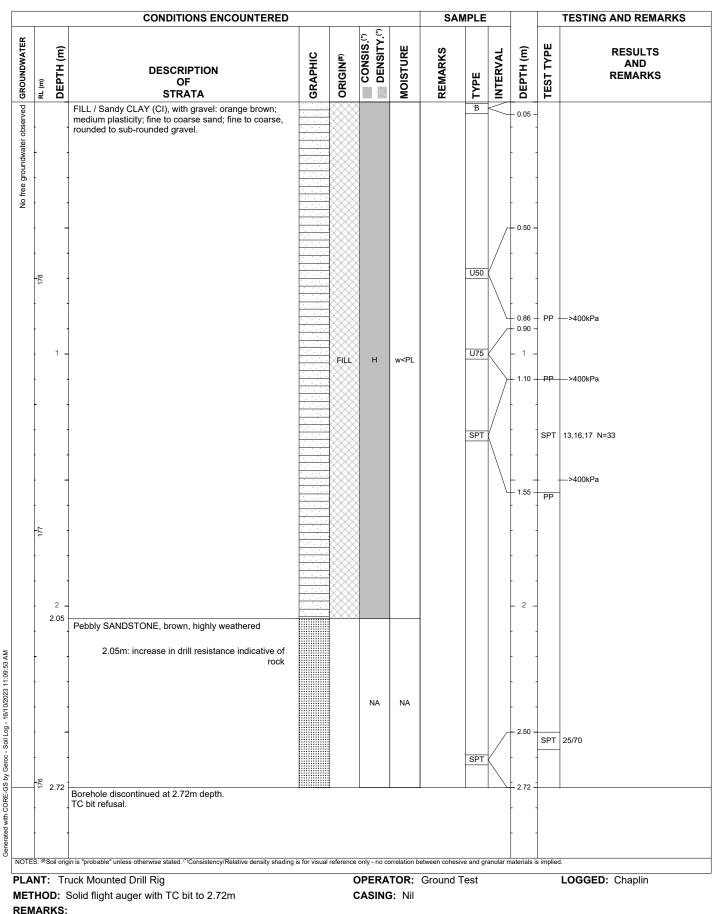
DIP/AZIMUTH: 90°/---°

LOCATION ID: 4 DATE: 21/09/23 SHEET: 2 of 2

-		CON		NSE)						SA	MPL	E			TESTING
	DEPTH (m)	DESCRIPTION	GRAPHIC	ORIGIN ^(#)	CONSIS. ⁽¹⁾ S	MOISTURE	Ξ.	DEPTH (m)	STRENGTH	RECOVERY NO	ĸ	## FRACTURE ## SPACING ## (m)	DEFECTS & REMARKS	SAMPLE REMARKS		INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARK
RL (m)	DEP.	OF STRATA	GRA	ORIC		MOIS	WEATH.	DEP.	1 ع⊣≅≖≅≞	REC (%)	RQD	FR B R P	DEFI	SAM REM	TYPE	INTE	DEP.	TESI	
171		[CONT] CORE LOSS								0	0			1				-	
-	5.96 6.05 6.18	SANDSTONE: brown with orange brown iron staining,						- 5.96 - - 6.05 - - 6.18 -	τ	100	0						- 6 -		
170		CORE LOSS SANDSTONE: brown with orange brown iron staining, fine to coarse grained; pebbly	ſ						P				Fe, RF	P, SH, PR,			 	<u>PLT =</u> PLT	PL(D)=2.9MP [\] PL(A)=2.3MP
-	7.	- - - -					MW		н				TI Fe, RI	= ```			_ 7 _	= PLT = PLT	PL(D)=1.3MF \PL(A)=1.6MP
169		+ + - -						7.55 -	•	94	94		7.48m: J Fe, RF	T/10°, PR,			- ·	₽LT = PLT	PL(D)=1.8MP _PL(A)=1.6MP
-	8.	From 8.12m: colour becomes grey						7.99 – – 8.12	M VH o	-							- 8 -	PLT PLT	
168	8.64	CORE LOSS	\mathbf{X}				FR SW to FR	8.29 - - 8.48 - 8.64 -		20	0						 	<u>=</u> PLT <u>-</u> PLT	PL(D)=0.4MF │PL(A)=0.89M
-	8.83 9.	SANDSTONE: brown with orange brown iron staining, fine to coarse grained; pebbly					MW to SW	- 8.83 -					8.97m: F RF	P, SH, PR,			- 9 - - 9 -		
167							SW to FR	- 9.40	м Э	100	91				UCS		= 9.49 = - - 9.71 -	<u>-</u> PLT <u>-</u> PLT	PL(A)=0.76M ^{_} PL(D)=0.61M
	10.00	Borehole discontinued at 10.00m depth. Limit of investigation.															- 10 -		
		- - - - -																	
=S: (#	⁹ Soil ori	gin is "probable" unless otherwise stated. ^(?) Consi:	stency/Rela	ative de	nsity shae	ding is fo	or visual	reference	e only - no c	orrelatior	n betwe	en cohesive a	nd granular	materials is	implied.				

METHOD: Solid flight auger to 4.66m, then NMLC coring to 10m depth CASING: HQ to 4.5m REMARKS:

 CLIENT:
 Ausgrid


 PROJECT:
 Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 178.7 AHD COORDINATE: E:303155.7, N:6430320.1 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

BOREHOLE LOG

LOCATION ID: 5 PROJECT No: 224763.00 DATE: 19/09/23 SHEET: 1 of 1

SURFACE LEVEL: 179.6 AHD COORDINATE: E:303197.1, N:6430318.1 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 6 PROJECT No: 224763.00 DATE: 20/09/23 SHEET: 1 of 2

CONDITIONS ENCOUNTERED SAMPLE TESTING ROCK SOIL CONSIS.(') DENSITY.(') STRENGTH DEFECTS & REMARKS RESULTS GROUNDWATER SAMPLE REMARKS **TYPE** RECOVERY DEPTH (m) MOISTURE DEPTH (m) DEPTH (m) AND NTERVAL GRAPHIC **ORIGIN**(#) WEATH. REMARKS DESCRIPTION ТҮРЕ RQD OF RL (m) % STRATA 0.03 No free groundwater observed TOPSOIL, silt and organics, dry Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, rounded to sub-0.50 rounded gravel. 179 U50 0.81 1 1.00 SPT 7.9.11 N=20 SPT >400kPa 1.45 PP 128 NA w<PL RS 2 2 2.50 1 SPT SPT 6.23.25/110 ->400kPa 2.91 PP 3 3 3.80m: increase in drill 176 resistance indicative of rock 3.80 Sandy CLAY (CI), with gravel: Generated with CORE-GS by Geroc - Combined Log - 16/10/2023 11:09:57 AM NA w<PL XWM orange brown; medium SPT plasticity; fine to coarse sand; 4.00 25/10 4.02 fine to coarse, rounded to sub-PLT -PL(A)=0.08MPa нw VL rounded gravel. PL(D)=0.1MPa PLT SANDSTONE: pale brown with 4.27 XW 427-4.33m: CS orange brown iron staining, fine to coarse grained; pebbly 4.33 4.51-4.52m: P/10° PR, RF 4.60m: P, SH, PR, 175 -PL(A)=0.4MPa RF PLT PL(D)=0.41MPa PLT 100 84 НW 4.93m: JT/10°, PR. RF 5 5 5.46m: P, SH, PR Soil origin is "probable" unless otherwise stated. (")Consistency/Relative density shading is for visual refer ive and granular materials is implie NOTES: OPERATOR: Ground Test LOGGED: Chaplin PLANT: Truck Mounted Drill Rig METHOD: CASING: HQ to 4m **REMARKS:**

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 179.6 AHD COORDINATE: E:303197.1, N:6430318.1 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 6 DATE: 20/09/23 SHEET: 2 of 2

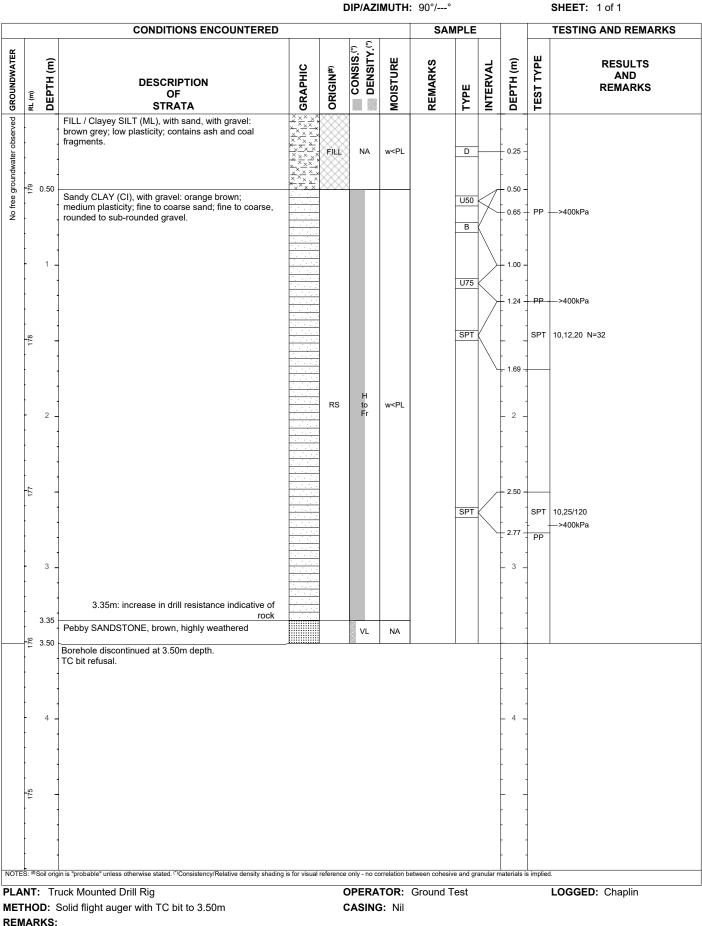
- 1			CON		NS			EREL)						SA	MPL	E	-		TESTING
GROUNDWALER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN(#)	DENSITY.(1)	MOISTURE	WEATH.	DEPTH (m)		RECOVERY 20 00 00 00 00 00 00 00 00 00 00 00 00		FRACTURE SPACING (m)	DEFECTS & REMARKS	SAMPLE REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULT AND REMARM
-	174	6 _	[CONT] SANDSTONE: pale brown with orange brown iron staining, fine to coarse grained; pebbly					HW		м	100	84		RF 553m: RF 5.73m: RF RF	JT/10°, PR, JT/10°, PR, JT/10°, PR,	UCS		- - - 6.00 -	PLT	⊂\PL(D)=0.34M PL(A)=0.4MP
-	173	-	- - -					xw	- 6.42 -	1	_			6.42-6.7	'6m: CS			- 6.28 - 	EPLT E	PL(D)=0.46N │PL(A)=0.43M
-		7 _	7.09m-10.00m: grey in colour					MW	— 6.76 — — 7.09	•	100	84			JT/10°, PR,			- 7 -	- PLT - PLT	−_PL(A)=0.76M │PL(D)=0.57N
	172	- - -						sw	- 7.68	5									 = = PLT -	PL(A)=0.88M
		8 _	-					MW	- 8.18	0								- 8 -	PLT	\PL(D)=0.98N
	5								- 6.18	8 М •о								- - 	PLT	—PL(A)=0.89N →PL(D)=0.8MI —PL(A)=0.41N
	171	9 _						FR						RF	P, SH, PR, IT/55°, PR,			- - - 9 - -	PLT	\PL(D)=0.76N
	170	-	-								100	100		9.48m: F RF	P, SH, PR,			- -	- - - PI T -	<u>–</u> −PL(A)=0.66N
	1	10.00	Borehole discontinued at 10.00m depth. Limit of investigation.															- - - - - - -	PLT	\PL(D)=0.66₩
			jin is "probable" unless otherwise stated. ⁽⁷⁾ Consis 'uck Mounted Drill Rig	stency/Rela	ative de	ensity shac	ting is fo	or visual					een cohesive a		materials is			GED:		

Refer to explanatory notes for symbol and abbreviation definitions

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation

LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

SURFACE LEVEL: 178.0 AHD COORDINATE: E:303263.5, N:6430317.4 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°


LOCATION ID: 7 DATE: 20/09/23 SHEET: 1 of 1

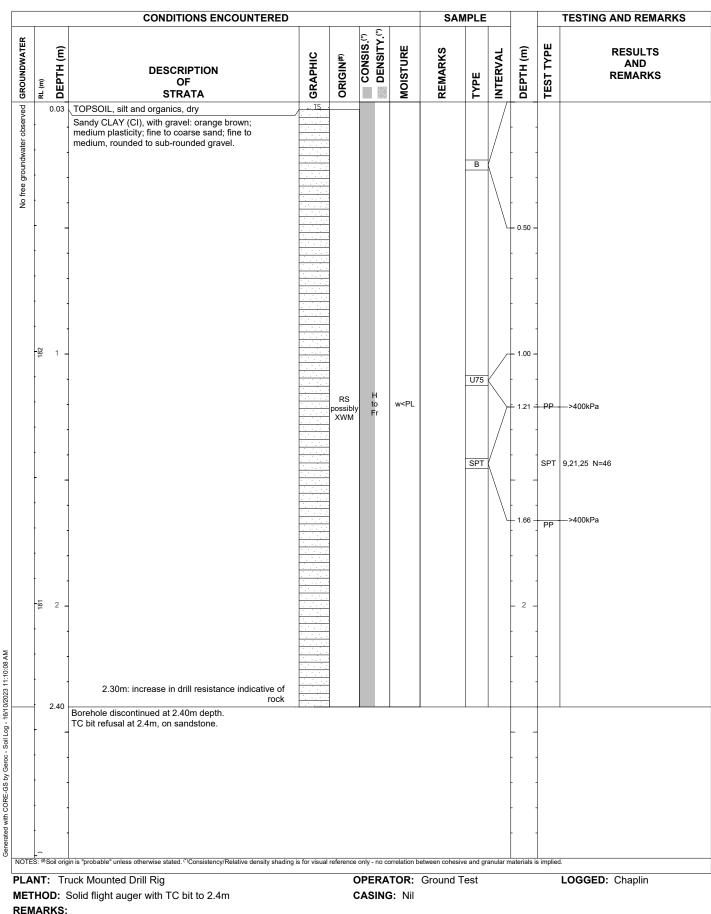
Ĵ		DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN#)	CONSIS. ^(*)	MOISTURE	REMARKS	ТҮРЕ	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
		-	FILL / Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse sand; fine to coarse, sub-angular to sub-rounded gravel.		FILL	NA	w <pl< td=""><td>-</td><td>U50 (</td><td></td><td>- 0.05 -</td><td>- - -</td><td></td></pl<>	-	U50 (- 0.05 -	- - -	
		0.50 - - 1 -	FILL / Clayey Gravelly SILT (ML), with sand: dark brown; low plasticity; fine to coarse, angular to sub- angular gravel; fine to coarse sand; trace coal fragments, trace possible ash.		FILL	NA	w <pl< td=""><td>-</td><td>D SPT (</td><td></td><td>- 0.73 - - 0.80 - - 1.00 -</td><td>PP -</td><td>—>400kPa 24.25/110</td></pl<>	-	D SPT (- 0.73 - - 0.80 - - 1.00 -	PP -	—>400kPa 24.25/110
	5	1.20	FILL / Silty GRAVEL (GM): dark grey; trace coal fragments, trace possible ash.		FILL	NA	D	-	D		- 1.26 - - 1.50 -	PP	—>400kPa
176 176 176	0	2.00 · - - - - - - - - - - - - - - - - - - -	FILL / Clayey Gravelly SILT (ML), with sand: dark brown; low plasticity; fine to coarse, angular to sub- angular gravel; fine to coarse sand; trace coal fragments, trace possible ash.	0 ************************************	FILL	NA	w <pl< td=""><td>-</td><td>SPT (</td><td></td><td>- 2 -</td><td>SPT</td><td>16,18,18 N=32</td></pl<>	-	SPT (- 2 -	SPT	16,18,18 N=32
-		3.20	Sandy CLAY (CI), with gravel: orange brown; medium plasticity; fine to coarse, rounded to sub- rounded gravel. PEBBLY SANDSTONE: orange brown 3.45m: increase in drill resistance indicative of rock		XWM	H	w <pl NA</pl 			-	- · ·	•	
	t 4	4.01 - - - - - -	Borehole discontinued at 4.01m depth. TC bit refusal.						SPT		- 4.00 = 	-	-25/10
			in is "probable" unless otherwise stated. ^(*) Consistency/Relative density shading uck Mounted Drill Rig	is for visual				etween cohesive Ground Te		inular m	aterials i		LOGGED: Chaplin

SURFACE LEVEL: 179.5 AHD PROJECT: Proposed Muswellbrook Substation COORDINATE: E:303323.0, N:6430306.4 LOCATION: 20 Sandy Point Road, Muswellbrook, NSW DATUM/GRID: MGA2020 56

LOCATION ID: 8 PROJECT No: 224763.00 DATE: 19/09/23 SHEET: 1 of 1

CLIENT:

Generated with CORE-GS by Geroc - Soil Log - 16/10/2023 11:10:04 AM


Ausgrid

CLIENT: Ausgrid PROJECT: Proposed Muswellbrook Substation LOCATION: 20 Sandy Point Road, Muswellbrook, NSW

BOREHOLE LOG

SURFACE LEVEL: 183.0 AHD COORDINATE: E:303151.9, N:6430268.6 PROJECT No: 224763.00 DATUM/GRID: MGA2020 56 DIP/AZIMUTH: 90°/---°

LOCATION ID: 9 DATE: 19/09/23 SHEET: 1 of 1

Douglas Partners Geotechnics | Environment | Groundwater

Appendix H

Laboratory Testing Reports

Laboratory Summary Tables:

Table H1: Summary of soil analysis for land use – TRH, BTEX, PAH, Metals

Table H2: Summary of soil analysis for land use – PCB, OCP, OPP, PFAS, Asbestos

Table H3: Summary of Soil Analysis for Wate Classification

CERTIFICATE OF ANALYSIS 346557

Client Details	
Client	Douglas Partners Newcastle
Attention	Michael Gawn
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	<u>224763.02, Muswellbrook</u>
Number of Samples	21 Soil
Date samples received	15/03/2024
Date completed instructions received	15/03/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	22/03/2024				
Date of Issue	22/03/2024				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Lucy Zhu, Asbestos Supervisor Timothy Toll, Senior Chemist

<u>Authorised By</u>

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		346557-1	346557-2	346557-3	346557-4	346557-5
Your Reference	UNITS	313	313	314	314	314
Depth		0.2	0.8	0.05	0.5	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	111	107	94	106	97
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		346557-6	346557-7	346557-8	346557-9	346557-10
Your Reference	UNITS	315	315	318	318	318
Depth		0.2	0.5	0.1	1.0	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
o-Xylene Naphthalene	mg/kg mg/kg	<1 <1	<1 <1	<1 <1	<1 <1	<1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		346557-11	346557-12	346557-13	346557-14	346557-15
Your Reference	UNITS	319	319	320	321	321
Depth		0.3	0.5	0.2	0.1	0.3
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	92	114	106	81
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		346557-16	346557-17	346557-18	346557-19	346557-20
Your Reference	UNITS	322	322	322	326	324
Depth		0.05	0.3	1.0	0.1	0.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Naphthalene Total +ve Xylenes	mg/kg mg/kg	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		346557-21
Your Reference	UNITS	D2/SBK
Depth		-
Date Sampled		13/03/2024
Type of sample		Soil
Date extracted	-	18/03/2024
Date analysed	-	21/03/2024
TRH C6 - C9	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	97

svTRH (C10-C40) in Soil						
Our Reference		346557-1	346557-2	346557-3	346557-4	346557-5
Your Reference	UNITS	313	313	314	314	314
Depth		0.2	0.8	0.05	0.5	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	190	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	140	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	330	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	280	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	280	<50
Surrogate o-Terphenyl	%	85	87	87	100	86
svTRH (C10-C40) in Soil						
svTRH (C10-C40) in Soil Our Reference		346557-6	346557-7	346557-8	346557-9	346557-10
	UNITS	346557-6 315	346557-7 315	346557-8 318	346557-9 318	346557-10 318
Our Reference	UNITS					
Our Reference Your Reference	UNITS	315	315	318	318	318
Our Reference Your Reference Depth	UNITS	315 0.2	315 0.5	318 0.1	318 1.0	318 1.5
Our Reference Your Reference Depth Date Sampled	UNITS -	315 0.2 12/03/2024	315 0.5 12/03/2024	318 0.1 12/03/2024	318 1.0 12/03/2024	318 1.5 12/03/2024
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	315 0.2 12/03/2024 Soil	315 0.5 12/03/2024 Soil	318 0.1 12/03/2024 Soil	318 1.0 12/03/2024 Soil	318 1.5 12/03/2024 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	315 0.2 12/03/2024 Soil 18/03/2024	315 0.5 12/03/2024 Soil 18/03/2024	318 0.1 12/03/2024 Soil 18/03/2024	318 1.0 12/03/2024 Soil 18/03/2024	318 1.5 12/03/2024 Soil 18/03/2024
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36) TRH >C ₁₀ -C ₁₆	- - mg/kg mg/kg mg/kg mg/kg mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16TRH >C10 -C16 less Naphthalene (F2)	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} -C_{16}TRH >C_{10} -C_{16} less Naphthalene (F2)TRH >C_{16} -C_{34}	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	315 0.2 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50 <50 <100	315 0.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50 <50 <100	318 0.1 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <50 <50 <50 <50 <50 <100	318 1.0 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <50 <50 <50 <50 <50 <100	318 1.5 12/03/2024 Soil 18/03/2024 19/03/2024 <50 <100 <100 <50 <50 <50 <50 <50 <100

svTRH (C10-C40) in Soil						
Our Reference		346557-11	346557-12	346557-13	346557-14	346557-15
Your Reference	UNITS	319	319	320	321	321
Depth		0.3	0.5	0.2	0.1	0.3
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	19/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	100	<50
Surrogate o-Terphenyl	%	83	83	79	85	81
svTRH (C10-C40) in Soil						
svTRH (C10-C40) in Soil Our Reference		346557-16	346557-17	346557-18	346557-19	346557-20
	UNITS	346557-16 322	346557-17 322	346557-18 322	346557-19 326	346557-20 324
Our Reference	UNITS					
Our Reference Your Reference	UNITS	322	322	322	326	324
Our Reference Your Reference Depth	UNITS	322 0.05	322 0.3	322 1.0	326 0.1	324 0.5
Our Reference Your Reference Depth Date Sampled	UNITS -	322 0.05 12/03/2024	322 0.3 12/03/2024	322 1.0 12/03/2024	326 0.1 12/03/2024	324 0.5 12/03/2024
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	322 0.05 12/03/2024 Soil	322 0.3 12/03/2024 Soil	322 1.0 12/03/2024 Soil	326 0.1 12/03/2024 Soil	324 0.5 12/03/2024 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	322 0.05 12/03/2024 Soil 18/03/2024	322 0.3 12/03/2024 Soil 18/03/2024	322 1.0 12/03/2024 Soil 18/03/2024	326 0.1 12/03/2024 Soil 18/03/2024	324 0.5 12/03/2024 Soil 18/03/2024
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86 660	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86 660 340	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86 660 340 1,100	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <100
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} -C_{16}	- - mg/kg mg/kg mg/kg mg/kg mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86 660 340 1,100 130	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} -C_{16}TRH >C_{10} -C_{16} less Naphthalene (F2)	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <100 <50 <50 <50 <50	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <100 <50 <50 <50 <50	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50 <50 <50	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86 660 340 1,100 130 130	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 20/03/2024 <50 <100 <100 <100 <50 <50 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} -C_{16}TRH >C_{10} -C_{16} less Naphthalene (F2)TRH >C_{16} -C_{34}	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	322 0.05 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50 <50 <50 <50 <100	322 0.3 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <100 <50 <50 <50 <50 <50 <100	322 1.0 12/03/2024 Soil 18/03/2024 20/03/2024 <50 <100 <50 <50 <50 <50 <50 <100	326 0.1 12/03/2024 Soil 18/03/2024 20/03/2024 86 660 340 1,100 130 130 130 870	324 0.5 12/03/2024 Soil 18/03/2024 20/03/2024 <20/03/2024 <50 <100 <50 <50 <50 <50 <50 <100

svTRH (C10-C40) in Soil		
Our Reference		346557-21
Your Reference	UNITS	D2/SBK
Depth		-
Date Sampled		13/03/2024
Type of sample		Soil
Date extracted	-	18/03/2024
Date analysed	-	20/03/2024
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	200
TRH C ₂₉ - C ₃₆	mg/kg	150
Total +ve TRH (C10-C36)	mg/kg	350
TRH >C10-C16	mg/kg	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C16 -C34	mg/kg	290
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	290
Surrogate o-Terphenyl	%	67

PAHs in Soil						
Our Reference		346557-1	346557-2	346557-3	346557-4	346557-5
Your Reference	UNITS	313	313	314	314	314
Depth		0.2	0.8	0.05	0.5	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	1.8	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.5	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.06	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	4.6	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	86	83	84	84	83

PAHs in Soil						
Our Reference		346557-6	346557-7	346557-8	346557-9	346557-10
Your Reference	UNITS	315	315	318	318	318
Depth		0.2	0.5	0.1	1.0	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.6	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.4	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.06	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	2.9	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	89	88	88	89	89

PAHs in Soil						
Our Reference		346557-11	346557-12	346557-13	346557-14	346557-15
Your Reference	UNITS	319	319	320	321	321
Depth		0.3	0.5	0.2	0.1	0.3
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	0.99	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	93	88	97	96

PAHs in Soil					_	_
Our Reference		346557-16	346557-17	346557-18	346557-19	346557-20
Your Reference	UNITS	322	322	322	326	324
Depth		0.05	0.3	1.0	0.1	0.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	2.7	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	1.2	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.8	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.8	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.08	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.1	<0.05	<0.05	6.9	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	71	90	83	85	85

PAHs in Soil		
Our Reference		346557-21
Your Reference	UNITS	D2/SBK
Depth		-
Date Sampled		13/03/2024
Type of sample		Soil
Date extracted	-	18/03/2024
Date analysed	-	20/03/2024
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	1.3
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	0.7
Pyrene	mg/kg	0.4
Benzo(a)anthracene	mg/kg	0.2
Chrysene	mg/kg	0.2
Benzo(b,j+k)fluoranthene	mg/kg	0.3
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	3.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	72

Organochlorine Pesticides in soil					_	
Our Reference		346557-1	346557-3	346557-4	346557-5	346557-6
Your Reference	UNITS	313	314	314	314	315
Depth		0.2	0.05	0.5	1.5	0.2
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	87	88	90	89	91

Organochlorine Pesticides in soil						
Our Reference		346557-8	346557-9	346557-11	346557-14	346557-16
Your Reference	UNITS	318	318	319	321	322
Depth		0.1	1.0	0.3	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	89	93	88	96	93

Organochlorine Pesticides in soil			
Our Reference		346557-17	346557-21
Your Reference	UNITS	322	D2/SBK
Depth		0.3	-
Date Sampled		12/03/2024	13/03/2024
Type of sample		Soil	Soil
Date extracted	-	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	90	87

Organophosphorus Pesticides in Soil					_	
Our Reference		346557-1	346557-3	346557-4	346557-5	346557-6
Your Reference	UNITS	313	314	314	314	315
Depth		0.2	0.05	0.5	1.5	0.2
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	87	88	90	89	91

Organophosphorus Pesticides in Soil						
Our Reference		346557-8	346557-9	346557-11	346557-14	346557-16
Your Reference	UNITS	318	318	319	321	322
Depth		0.1	1.0	0.3	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	89	93	88	96	93

Organophosphorus Pesticides in Soil			
Our Reference		346557-17	346557-21
Your Reference	UNITS	322	D2/SBK
Depth		0.3	-
Date Sampled		12/03/2024	13/03/2024
Type of sample		Soil	Soil
Date extracted	-	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024
Dichlorvos	mg/kg	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	90	87

PCBs in Soil						
Our Reference		346557-1	346557-3	346557-4	346557-5	346557-6
Your Reference	UNITS	313	314	314	314	315
Depth		0.2	0.05	0.5	1.5	0.2
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	92	90	92	90	97

PCBs in Soil						
Our Reference		346557-8	346557-9	346557-11	346557-14	346557-16
Your Reference	UNITS	318	318	319	321	322
Depth		0.1	1.0	0.3	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	91	96	92	102	97

PCBs in Soil			
Our Reference		346557-17	346557-21
Your Reference	UNITS	322	D2/SBK
Depth		0.3	-
Date Sampled		12/03/2024	13/03/2024
Type of sample		Soil	Soil
Date extracted	-	18/03/2024	18/03/2024
Date analysed	-	20/03/2024	20/03/2024
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	96	84

Acid Extractable metals in soil						
Our Reference		346557-1	346557-2	346557-3	346557-4	346557-5
Your Reference	UNITS	313	313	314	314	314
Depth		0.2	0.8	0.05	0.5	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
Arsenic	mg/kg	15	<4	16	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	15	5	7	22
Copper	mg/kg	7	16	5	18	7
Lead	mg/kg	12	11	8	3	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	24	10	5	46	42
Zinc	mg/kg	32	44	7	7	14

Acid Extractable metals in soil						
Our Reference		346557-6	346557-7	346557-8	346557-9	346557-10
Your Reference	UNITS	315	315	318	318	318
Depth		0.2	0.5	0.1	1.0	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
Arsenic	mg/kg	5	10	5	14	10
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	22	31	9	12	8
Copper	mg/kg	8	7	18	18	7
Lead	mg/kg	7	15	8	10	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	15	21	51	39	10
Zinc	mg/kg	17	19	19	34	29

Acid Extractable metals in soil						
Our Reference		346557-11	346557-12	346557-13	346557-14	346557-15
Your Reference	UNITS	319	319	320	321	321
Depth		0.3	0.5	0.2	0.1	0.3
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
Arsenic	mg/kg	5	<4	8	6	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	16	18	12	12
Copper	mg/kg	9	5	6	9	4
Lead	mg/kg	13	10	11	10	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	13	16	15	5
Zinc	mg/kg	21	24	21	27	9

Acid Extractable metals in soil						
Our Reference		346557-16	346557-17	346557-18	346557-19	346557-20
Your Reference	UNITS	322	322	322	326	324
Depth		0.05	0.3	1.0	0.1	0.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024	21/03/2024	21/03/2024
Arsenic	mg/kg	4	5	5	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	17	22	9	11
Copper	mg/kg	21	5	6	10	15
Lead	mg/kg	5	9	7	7	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	77	10	10	18	11
Zinc	mg/kg	11	8	15	32	53

Acid Extractable metals in soil				
Our Reference		346557-21	346557-22	346557-23
Your Reference	UNITS	D2/SBK	319 - [TRIPLICATE]	322 - [TRIPLICATE]
Depth		-	0.3	0.3
Date Sampled		13/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	21/03/2024	21/03/2024	21/03/2024
Arsenic	mg/kg	<4	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	6	12	17
Copper	mg/kg	17	5	4
Lead	mg/kg	4	10	8
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	43	8	7
Zinc	mg/kg	9	19	7

Misc Soil - Inorg						
Our Reference		346557-1	346557-3	346557-4	346557-5	346557-6
Your Reference	UNITS	313	314	314	314	315
Depth		0.2	0.05	0.5	1.5	0.2
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		346557-8	346557-9	346557-11	346557-14	346557-16
Your Reference	UNITS	318	318	319	321	322
Depth		0.1	1.0	0.3	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Date analysed	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		346557-17	346557-21			
Your Reference	UNITS	322	D2/SBK			
Depth		0.3	-			
Date Sampled		12/03/2024	13/03/2024			
Type of sample		Soil	Soil			
Date prepared	-	19/03/2024	19/03/2024			
Date analysed	-	19/03/2024	19/03/2024			

<5

<5

mg/kg

Total Phenolics (as Phenol)

Moisture				-		
Our Reference		346557-1	346557-2	346557-3	346557-4	346557-5
Your Reference	UNITS	313	313	314	314	314
Depth		0.2	0.8	0.05	0.5	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Moisture	%	9.6	4.5	8.4	6.2	18
Moisture						
Our Reference		346557-6	346557-7	346557-8	346557-9	346557-10
Your Reference	UNITS	315	315	318	318	318
Depth		0.2	0.5	0.1	1.0	1.5
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Moisture	%	2.8	8.2	11	6.1	9.3
Moisture					_	
Our Reference		346557-11	346557-12	346557-13	346557-14	346557-15
Your Reference	UNITS	319	319	320	321	321
Depth		0.3	0.5	0.2	0.1	0.3
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	18/03/2024	18/03/2024	18/03/2024	18/03/2024	18/03/2024
Date analysed	-	19/03/2024	19/03/2024	19/03/2024	19/03/2024	19/03/2024
Moisture	%	9.6	11	8.0	8.1	4.6
Moisture						
Our Reference		346557-16	346557-17	346557-18	346557-19	346557-20
Your Reference	UNITS	322	322	322	326	324
Depth		0.05	0.3	1.0	0.1	0.5
		12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Date Sampled		12/03/2024	12/00/2024			
Date Sampled Type of sample		Soil	Soil	Soil	Soil	Soil
	-			Soil 18/03/2024	Soil 18/03/2024	Soil 18/03/2024
Type of sample	-	Soil	Soil			

Moisture		
Our Reference		346557-21
Your Reference	UNITS	D2/SBK
Depth		-
Date Sampled		13/03/2024
Type of sample		Soil
Date prepared	-	18/03/2024
Date analysed	-	19/03/2024
Moisture	%	3.6

Asbestos ID - soils NEPM					
Our Reference		346557-1	346557-9	346557-11	346557-17
Your Reference	UNITS	313	318	319	322
Depth		0.2	1.0	0.3	0.3
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	20/03/2024	20/03/2024	20/03/2024	20/03/2024
Sample mass tested	g	889.07	985.37	834.86	766.93
Sample Description	-	Red clayey soil & rocks	Grey coarse- grained soil & rocks	Brown clayey soil & rocks	Grey fine-graine soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	_	-	-
FA and AF Estimation*	g	_	_	-	_
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF relative to the sample mass tested)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date extracted	-			18/03/2024	1	18/03/2024	18/03/2024		18/03/2024	18/03/2024
Date analysed	-			21/03/2024	1	21/03/2024	21/03/2024		21/03/2024	21/03/2024
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	94	119
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	94	119
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	83	124
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	90	110
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	94	116
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	102	123
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	112	127
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	107	1	111	106	5	103	117

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	346557-21
Date extracted	-			[NT]	11	18/03/2024	18/03/2024			18/03/2024
Date analysed	-			[NT]	11	21/03/2024	21/03/2024			21/03/2024
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	11	<25	<25	0		103
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	11	<25	<25	0		103
Benzene	mg/kg	0.2	Org-023	[NT]	11	<0.2	<0.2	0		91
Toluene	mg/kg	0.5	Org-023	[NT]	11	<0.5	<0.5	0		99
Ethylbenzene	mg/kg	1	Org-023	[NT]	11	<1	<1	0		104
m+p-xylene	mg/kg	2	Org-023	[NT]	11	<2	<2	0		111
o-Xylene	mg/kg	1	Org-023	[NT]	11	<1	<1	0		113
Naphthalene	mg/kg	1	Org-023	[NT]	11	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	11	110	112	2		115

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	17	18/03/2024	18/03/2024			[NT]	
Date analysed	-			[NT]	17	21/03/2024	21/03/2024			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	17	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	17	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	17	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	17	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	17	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	17	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	17	<1	<1	0		[NT]	
Naphthalene	mg/kg	1	Org-023	[NT]	17	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	17	106	105	1		[NT]	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3	
Date extracted	-			18/03/2024	1	18/03/2024	18/03/2024		18/03/2024	18/03/2024	
Date analysed	-			19/03/2024	1	19/03/2024	19/03/2024		19/03/2024	19/03/2024	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	70	86	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	72	101	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	129	104	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	70	86	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	72	101	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	129	104	
Surrogate o-Terphenyl	%		Org-020	86	1	85	84	1	105	87	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	346557-21	
Date extracted	-			[NT]	11	18/03/2024	18/03/2024		[NT]	18/03/2024	
Date analysed	-			[NT]	11	19/03/2024	20/03/2024		[NT]	20/03/2024	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	11	<50	<50	0	[NT]	77	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	11	<100	<100	0	[NT]	115	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	11	<100	<100	0	[NT]	#	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	11	<50	<50	0	[NT]	77	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	11	<100	<100	0	[NT]	115	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	11	<100	<100	0	[NT]	#	
Surrogate o-Terphenyl	%		Org-020	[NT]	11	83	81	2	[NT]	67	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				17	18/03/2024	18/03/2024		[NT]	
Date analysed	-				17	20/03/2024	20/03/2024		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020		17	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020		17	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020		17	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020		17	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020		17	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020		17	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	17	80	75	6	[NT]	[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date extracted	-			18/03/2024	1	18/03/2024	18/03/2024		18/03/2024	18/03/2024
Date analysed	-			20/03/2024	1	20/03/2024	20/03/2024		20/03/2024	20/03/2024
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	66	82
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	88
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	82
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	102
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	108
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	102
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	66	70
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	62	80
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	79	1	86	79	8	91	88

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	346557-21
Date extracted	-			[NT]	11	18/03/2024	18/03/2024			18/03/2024
Date analysed	-			[NT]	11	20/03/2024	20/03/2024			20/03/2024
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		70
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		76
Fluorene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		72
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		84
Anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		#
Pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		#
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		#
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	11	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	11	<0.05	<0.05	0		#
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	11	87	93	7		75

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	17	18/03/2024	18/03/2024			[NT]
Date analysed	-			[NT]	17	20/03/2024	20/03/2024			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	17	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	17	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	17	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	17	90	87	3		[NT]

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date extracted	-			18/03/2024	1	18/03/2024	18/03/2024		18/03/2024	18/03/2024
Date analysed	-			20/03/2024	1	20/03/2024	20/03/2024		20/03/2024	20/03/2024
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	106
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	114
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	100	106
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	94
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	108	108
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	108
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	124
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	100
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	92
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	106
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	84	1	87	82	6	75	88

QUALITY CONTI	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	346557-21
Date extracted	-			[NT]	11	18/03/2024	18/03/2024			18/03/2024
Date analysed	-			[NT]	11	20/03/2024	20/03/2024			20/03/2024
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		88
НСВ	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		104
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		100
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		86
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		108
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		108
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		111
Endrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		112
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		88
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		122
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	11	88	95	8		87

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				17	18/03/2024	18/03/2024			[NT]
Date analysed	-				17	20/03/2024	20/03/2024			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		17	90	88	2		[NT]

QUALITY CONTRO	DL: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date extracted	-			18/03/2024	1	18/03/2024	18/03/2024		18/03/2024	18/03/2024
Date analysed	-			20/03/2024	1	20/03/2024	20/03/2024		20/03/2024	20/03/2024
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	104
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	78
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	64	70
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	64	76
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	82
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	60	72
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	62	82
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	84	1	87	82	6	75	88

QUALITY CONTR	OL: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	346557-21
Date extracted	-				11	18/03/2024	18/03/2024			18/03/2024
Date analysed	-				11	20/03/2024	20/03/2024			20/03/2024
Dichlorvos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		106
Mevinphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		76
Fenitrothion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		90
Malathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		90
Chlorpyriphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		86
Fenthion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		80
Bromophos-ethyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		116
Phosalone	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		11	88	95	8		87

QUALITY CONTR	OL: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				17	18/03/2024	18/03/2024			[NT]
Date analysed	-				17	20/03/2024	20/03/2024			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		17	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		17	90	88	2		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date extracted	-			18/03/2024	1	18/03/2024	18/03/2024		18/03/2024	18/03/2024
Date analysed	-			20/03/2024	1	20/03/2024	20/03/2024		20/03/2024	20/03/2024
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	78	80
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	87	1	92	87	6	77	92

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	346557-21
Date extracted	-			[NT]	11	18/03/2024	18/03/2024			18/03/2024
Date analysed	-			[NT]	11	20/03/2024	20/03/2024			20/03/2024
Aroclor 1016	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		60
Aroclor 1260	mg/kg	0.1	Org-021/022/025	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	11	92	99	7		84

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				17	18/03/2024	18/03/2024			
Date analysed	-				17	20/03/2024	20/03/2024			
Aroclor 1016	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021/022/025		17	<0.1	<0.1	0		
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	17	96	93	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date prepared	-			19/03/2024	1	19/03/2024	19/03/2024		19/03/2024	19/03/2024
Date analysed	-			21/03/2024	1	21/03/2024	21/03/2024		21/03/2024	21/03/2024
Arsenic	mg/kg	4	Metals-020	<4	1	15	16	6	117	114
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	110	98
Chromium	mg/kg	1	Metals-020	<1	1	14	20	35	112	105
Copper	mg/kg	1	Metals-020	<1	1	7	7	0	111	108
Lead	mg/kg	1	Metals-020	<1	1	12	15	22	114	104
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	97	88
Nickel	mg/kg	1	Metals-020	<1	1	24	30	22	111	104
Zinc	mg/kg	1	Metals-020	<1	1	32	40	22	112	104

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-13	346557-21
Date prepared	-			[NT]	11	19/03/2024	19/03/2024		19/03/2024	19/03/2024
Date analysed	-			[NT]	11	21/03/2024	21/03/2024		21/03/2024	21/03/2024
Arsenic	mg/kg	4	Metals-020	[NT]	11	5	6	18	110	101
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0	102	90
Chromium	mg/kg	1	Metals-020	[NT]	11	16	16	0	104	95
Copper	mg/kg	1	Metals-020	[NT]	11	9	9	0	104	97
Lead	mg/kg	1	Metals-020	[NT]	11	13	13	0	106	94
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0	94	85
Nickel	mg/kg	1	Metals-020	[NT]	11	11	11	0	103	95
Zinc	mg/kg	1	Metals-020	[NT]	11	21	32	42	104	92

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	17	19/03/2024	19/03/2024		[NT]	
Date analysed	-			[NT]	17	21/03/2024	21/03/2024		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	17	5	<4	22	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	17	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	17	17	13	27	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	17	5	3	50	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	17	9	5	57	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	17	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	17	10	6	50	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	17	8	6	29	[NT]	[NT]

QUALITY		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-12	346557-3
Date prepared	-			19/03/2024	1	19/03/2024	19/03/2024		19/03/2024	19/03/2024
Date analysed	-			19/03/2024	1	19/03/2024	19/03/2024		19/03/2024	19/03/2024
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	101	102
						D	11 A		0 1 0	0/
QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	ecovery %
QUALITY Test Description	CONTROL: Units	Misc Soi	il - Inorg Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	ecovery % [NT]
				Blank [NT]	# 11			RPD		
Test Description	Units					Base	Dup.	RPD	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 346557-11 for Zn. Therefore a triplicate result has been issued as laboratory sample number 346557-22.

- The laboratory RPD acceptance criteria has been exceeded for 346557-17 for Ni and Pb. Therefore a triplicate result has been issued as laboratory sample number 346557-23.

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 346557-21ms have caused interference.

CERTIFICATE OF ANALYSIS 346557-A

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	<u>224763.02, Muswellbrook</u>
Number of Samples	additional testing
Date samples received	15/03/2024
Date completed instructions received	02/04/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	05/04/2024
Date of Issue	05/04/2024
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Amanda Chui, LC/Air Toxics Supervisor Loren Bardwell, Development Chemist Sean McAlary, Chemist (FAS) <u>Authorised By</u> Nancy Zhang, Laboratory Manager

PFAS in Soils Short					
Our Reference		346557-A-4	346557-A-5	346557-A-8	346557-A-16
Your Reference	UNITS	314	314	318	322
Depth		0.5	1.5	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	03/04/2024	03/04/2024	03/04/2024	03/04/2024
Date analysed	-	03/04/2024	03/04/2024	03/04/2024	03/04/2024
Perfluorohexanesulfonic acid - PFHxS	µg/kg	<0.1	<0.1	<0.1	<0.1
Perfluorooctanesulfonic acid PFOS	µg/kg	<0.1	<0.1	0.1	0.2
Perfluorooctanoic acid PFOA	µg/kg	<0.1	<0.1	<0.1	<0.1
6:2 FTS	µg/kg	<0.1	<0.1	<0.1	<0.1
8:2 FTS	µg/kg	<0.2	<0.2	<0.2	<0.2
Surrogate ¹³ C ₈ PFOS	%	101	98	93	97
Surrogate ¹³ C ₂ PFOA	%	99	102	99	99
Extracted ISTD ¹⁸ O ₂ PFHxS	%	104	89	101	96
Extracted ISTD ¹³ C ₄ PFOS	%	101	91	103	101
Extracted ISTD ¹³ C ₄ PFOA	%	117	89	107	106
Extracted ISTD ¹³ C ₂ 6:2FTS	%	144	95	115	117
Extracted ISTD ¹³ C ₂ 8:2FTS	%	157	95	120	116
Total Positive PFHxS & PFOS	µg/kg	<0.1	<0.1	0.1	0.2
Total Positive PFOS & PFOA	µg/kg	<0.1	<0.1	0.1	0.2
Total Positive PFAS	µg/kg	<0.1	<0.1	0.1	0.2

Metals from Leaching Fluid pH 2.9 or 5					
Our Reference		346557-A-4	346557-A-5	346557-A-8	346557-A-16
Your Reference	UNITS	314	314	318	322
Depth		0.5	1.5	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	05/04/2024	05/04/2024	05/04/2024	05/04/2024
Date analysed	-	05/04/2024	05/04/2024	05/04/2024	05/04/2024
pH of soil for fluid# determ.	pH units	6.5	6.2	6.8	6.8
pH of soil TCLP (after HCl)	pH units	1.5	1.6	1.6	1.6
Extraction fluid used		1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.0	5.0
Nickel	mg/L	0.07	<0.02	0.04	0.09

PFAS in TCLP Short					
Our Reference		346557-A-4	346557-A-5	346557-A-8	346557-A-16
Your Reference	UNITS	314	314	318	322
Depth		0.5	1.5	0.1	0.05
Date Sampled		12/03/2024	12/03/2024	12/03/2024	12/03/2024
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	04/04/2024	04/04/2024	04/04/2024	04/04/2024
Date analysed	-	04/04/2024	04/04/2024	04/04/2024	04/04/2024
Perfluorohexanesulfonic acid - PFHxS	µg/L	<0.01	<0.01	<0.01	<0.01
Perfluorooctanesulfonic acid PFOS	µg/L	<0.01	<0.01	<0.01	<0.01
Perfluorooctanoic acid PFOA	µg/L	<0.01	<0.01	<0.01	<0.01
6:2 FTS	µg/L	<0.01	<0.01	<0.01	<0.01
8:2 FTS	µg/L	<0.02	<0.02	<0.02	<0.02
Surrogate ¹³ C ₈ PFOS	%	99	98	96	101
Surrogate ¹³ C ₂ PFOA	%	94	116	105	95
Extracted ISTD ¹⁸ O ₂ PFHxS	%	109	103	111	112
Extracted ISTD ¹³ C ₄ PFOS	%	106	106	105	103
Extracted ISTD ¹³ C ₄ PFOA	%	102	91	91	99
Extracted ISTD ¹³ C ₂ 6:2FTS	%	92	92	89	91
Extracted ISTD ¹³ C ₂ 8:2FTS	%	124	118	134	130
Total Positive PFHxS & PFOS	µg/L	<0.01	<0.01	<0.01	<0.01
Total Positive PFOS & PFOA	µg/L	<0.01	<0.01	<0.01	<0.01
Total Positive PFAS	µg/L	<0.01	<0.01	<0.01	<0.01

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALITY C	ONTROL: F	PFAS in S	oils Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	346557-A-5
Date prepared	-			03/04/2024	4	03/04/2024	03/04/2024		03/04/2024	03/04/2024
Date analysed	-			03/04/2024	4	03/04/2024	03/04/2024		03/04/2024	03/04/2024
Perfluorohexanesulfonic acid - PFHxS	µg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	96	92
Perfluorooctanesulfonic acid PFOS	µg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	96	86
Perfluorooctanoic acid PFOA	µg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	95	92
6:2 FTS	µg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	87	87
8:2 FTS	µg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	95	96
Surrogate ¹³ C ₈ PFOS	%		Org-029	102	4	101	102	1	100	93
Surrogate ¹³ C ₂ PFOA	%		Org-029	97	4	99	100	1	104	102
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	102	4	104	102	2	101	94
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	100	4	101	97	4	97	95
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	107	4	117	118	1	102	92
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	117	4	144	154	7	112	96
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	111	4	157	158	1	118	96

QUALITY CONTROL	: Metals fror	n Leachir	ng Fluid pH 2.9 or \$		Du		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	346557-A-5
Date extracted	-			05/04/2024	4	05/04/2024	05/04/2024		05/04/2024	05/04/2024
Date analysed	-			05/04/2024	4	05/04/2024	05/04/2024		05/04/2024	05/04/2024
Nickel	mg/L	0.02	Metals-020	<0.02	4	0.07	0.08	13	104	110

QUALITY C	ONTROL: P	FAS in T	CLP Short			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	346557-A-5
Date prepared	-			04/04/2024	4	04/04/2024	04/04/2024		04/04/2024	04/04/2024
Date analysed	-			04/04/2024	4	04/04/2024	04/04/2024		04/04/2024	04/04/2024
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.01	Org-029	<0.01	4	<0.01	<0.01	0	94	88
Perfluorooctanesulfonic acid PFOS	µg/L	0.01	Org-029	<0.01	4	<0.01	<0.01	0	92	98
Perfluorooctanoic acid PFOA	µg/L	0.01	Org-029	<0.01	4	<0.01	<0.01	0	104	100
6:2 FTS	µg/L	0.01	Org-029	<0.01	4	<0.01	<0.01	0	91	102
8:2 FTS	µg/L	0.02	Org-029	<0.02	4	<0.02	<0.02	0	79	86
Surrogate ¹³ C ₈ PFOS	%		Org-029	100	4	99	103	4	100	100
Surrogate ¹³ C ₂ PFOA	%		Org-029	102	4	94	98	4	108	110
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	103	4	109	110	1	102	112
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	106	4	106	105	1	104	103
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	96	4	102	94	8	92	90
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	90	4	92	86	7	86	84
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	100	4	124	123	1	119	126

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Table H1: Summary of Laboratory Results of Soil Analysis for Land Use – Priority metals, Priority PAH, Priority TRH, BTEX

100 100 100 0 0 0 0 <th></th> <th></th> <th colspan="10">Priority metals</th> <th>Priorit</th> <th>y PAH</th> <th></th> <th></th> <th></th> <th>Priori</th> <th>ty TRH</th> <th></th> <th></th> <th></th> <th>BT</th> <th>EX</th> <th></th>			Priority metals										Priorit	y PAH				Priori	ty TRH				BT	EX	
image image <t< th=""><th></th><th></th><th></th><th>Total Arsenic</th><th>Cadmium</th><th>Total Chromium</th><th>Copper</th><th>Lead</th><th>Mercury (inorganic)</th><th>Nickel</th><th>Zinc</th><th>aphthalene</th><th>c</th><th>Benzo(a)pyrene TEQ (B(a)P TEQ)</th><th>Total PAH</th><th>1 C6 -</th><th>~CIO</th><th>((ce</th><th>>C10-C16 aphthalen</th><th>(>Cl6</th><th>(>C34-C</th><th>Benzene</th><th>Toluene</th><th>Ethylbenzene</th><th>Total Xylenes</th></t<>				Total Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	aphthalene	c	Benzo(a)pyrene TEQ (B(a)P TEQ)	Total PAH	1 C6 -	~CIO	((ce	>C10-C16 aphthalen	(>Cl6	(>C34-C	Benzene	Toluene	Ethylbenzene	Total Xylenes
int int<			PQL	4	0.4	1	1	1	0.1	1	1	1	0.05	0.5	0.05	25	50		50	100	100	0.2	0.5	1	1
Image Mode ode Mode <thm< td=""><td>Sample ID</td><td>Depth</td><td>Sample Date</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td></thm<>	Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
功用 内用 P P P P <	313	0.2 m	12/03/24		<0.4									<0.5		<25			<50						
N N N N N N N N N <				1	900 - <0.4					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				40 - <0.5		<25			NL -						230 180
h h	313	0.8 m	12/03/24			-								40 -					NL -						230 180
N N	314	0.05 m	12/03/24		<0.4	5	5	8	<0.1				<0.05	<0.5	<0.05	<25			<50						
Norm Other Norm orm Norm	514	0.05111	12/03/24	1	900 -	3,000 0.0		.,=== .,===	730 -					40 -					NL -						200 .00
bit bit </td <td>314</td> <td>0.5 m</td> <td>12/03/24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	314	0.5 m	12/03/24								-								<50						
0 m 0 m <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td></td> <td>A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF</td> <td></td> <td>1 · · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NL - <50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>230 180 <1</td>				1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF		1 · · · · · · · · · · · · · · · · · · ·									NL - <50						230 180 <1
36 15m 000 000 000 000	D2/SBK	0 m	13/03/24						730 -		-			40 -					NL -						230 180
Image: state Image: state	314	15 m	12/03/24	8	<0.4	22	7	12	<0.1	42	14	<1	<0.05	<0.5	<0.05	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<]
16 000000 10000000 1000000000000000000000000000000000000			12/00/21			3,000 0.0													1112						NL 180
13 10 10 10 </td <td>315</td> <td>0.2 m</td> <td>12/03/24</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td><0.1</td> <td></td> <td></td> <td></td> <td></td> <td><0.5</td> <td></td> <td><25</td> <td></td> <td></td> <td><50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	315	0.2 m	12/03/24				-		<0.1					<0.5		<25			<50						
15 000 1000 900 7 900 700 700 700 700				-,	500	3,000 070		.,=== .,===	<0.1	0,000 00	100,000 100			<0.5	1,000	<25			<50						230 180 <1
B B	315	0.5 m	12/03/24								-								NL -						230 180
····································	710	01m	12/07/24	5	<0.4	9	18	8	<0.1	51		<1	0.06	<0.5	2.9	<25			<50		<100		<0.5		<1
18 100 100 100 500 100	510	0.1111	12/03/24		900 -			A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	730 -	1 · · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			40 -	4,000 -				NL -						230 180
13 13 10 60<	318	1 m	12/03/24		<0.4		-		<0.1					<0.5		<25			<50						
18 100 1000 + 1000 + 1000 +					900 - <0.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	<0.1					40 - <0.5		<25			NL - <50						NL 180
139 1300 1300 1300 1300 150 150 150 100	318	1.5 m	12/03/24			3,600 670		1,500 1,800						40 -					NL -						NL 180
○ ○ ○ ○ ○ ○	719	03 m	12/03/24		<0.4	16	9	13	<0.1	11	21	<1	<0.05	<0.5	<0.05	<25			<50		<100				
100 100 <td>515</td> <td>0.5111</td> <td>12/03/24</td> <td></td> <td>900 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40 -</td> <td></td> <td></td> <td></td> <td></td> <td>NL -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>230 180</td>	515	0.5111	12/03/24		900 -									40 -					NL -						230 180
here here here init init </td <td>319</td> <td>0.5 m</td> <td>12/03/24</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	319	0.5 m	12/03/24				-																		
320 0.2 m 100 / h 90.0 h 80.0 fo 80.0				1						1 · · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														230 180 <1
321 01m 12034 300 160 900 - 3600 67 4000 7 100 160 700 - 600 60 6000 190 NL 30 0.1 0 0.0 0.0 0.0 0.	320	0.2 m	12/03/24		900 -			1,500 1,800	730 -					40 -					NL -						230 180
Image: bit in the state in thestate in the state in thest transform in the state in t	321	01m	12/03/24	6	<0.4	12	9	10	<0.1	15	27	<]	<0.05	<0.5	0.99	<25	<50	<25	<50	100	<100	<0.2	<0.5	<1	<1
S21 0.3 m 12/03/4 300 is 90 · 3.60 cm 300 is 100 is 300 is 90 · 3.60 cm 300 is 100 is </td <td>521</td> <td>0.1111</td> <td>12/03/24</td> <td></td> <td></td> <td>3,000 0.0</td> <td></td> <td>A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF</td> <td></td> <td>0,000 00</td> <td>100,001 130</td> <td></td> <td></td> <td>10</td> <td></td> <td>230 180</td>	521	0.1111	12/03/24			3,000 0.0		A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF		0,000 00	100,001 130			10											230 180
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	321	0.3 m	12/03/24							-	-					<25			<50						
322 0.0 fm 12/03/4 3,00 fm 900 · 3,00 fm 400 fm 730 · 6,00 fm 900 · 1,00 fm 900 · 3,00 fm 900 · 3,00 fm 900 · 1,00 fm 900 · 3,00 fm 900 · 1,00 fm 900 fm 900 fm </td <td></td> <td></td> <td></td> <td></td> <td>500</td> <td>3,000 0.0</td> <td></td> <td></td> <td></td> <td></td> <td>100,001 100</td> <td></td> <td></td> <td>10</td> <td></td> <td><25</td> <td></td> <td></td> <td><50 <</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>230 180 <1</td>					500	3,000 0.0					100,001 100			10		<25			<50 <						230 180 <1
322 0.3 m 12/03/24 300 16 900 - 360 67 4000 75 150 180 730 - 600 67 400 - 40 - 400 - 500 16 50 180 50 180 730 - 600 67 400 -	322	0.05 m	12/03/24		900 -	3,600 670		1,500 1,800	730 -		400,00(190								NL -						230 180
Image: 1 1 3 5 3 6 6 0 0 0 0 <td>322</td> <td>03m</td> <td>12/03/24</td> <td>5</td> <td><0.4</td> <td></td> <td></td> <td>9</td> <td><0.1</td> <td></td> <td></td> <td></td> <td><0.05</td> <td><0.5</td> <td><0.05</td> <td><25</td> <td></td> <td></td> <td><50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><1</td>	322	03m	12/03/24	5	<0.4			9	<0.1				<0.05	<0.5	<0.05	<25			<50						<1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	522	0.5 111	12,00/24		500	3,000 0.0				0,000 00	100,000 100			40 -	1,000				NL -						230 180
326 0.1 2 4 4 9 10 7 4 10 10 7 4 10 10 7 4 10 10 7 4 10 10 4 5 10 6 5 10 6 10 2 10 10 2 10 4	322	1 m	12/03/24													<25			<50						
326 0.1m 12/03/24 300 60 900 300 600 70				1						100 C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10		<25			INL -						NL 180
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	326	0.1 m	12/03/24		900 -				730 -					40 -	4,000 -				NL -						230 180
A Signed from the state Signed from the	324	0.5 m	12/03/24	7	<0.4									<0.5		<25	<50	<25	<50	<100		<0.2	<0.5	<1	<1
Image: Transmission of the state of the				1	900 -						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			40 -					NL -						200 100
322 - 0.3 m 12/03/24 5 <0.4 17 4 8 <0.1 7 7		0.3 m	12/03/24				-				-														
TRIPLICATE] U.S.M 12/U9/24 3.000 160 900 - 3.600 670 240,001 75 1.500 1.800 730 - 6.000 60 400,001 190		07.00	22/07/27								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	-	-	-	-	-	-	-	-	-	-	-	
	[TRIPLICATE]	0.3 m	12/03/24	3,000 160	900 -	3,600 670	240,00(75	1,500 1,800	730 -	6,000 60	400,00(190														

Lab result HIL/HSL value EIL/ESL/EGV value 🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📒 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 💻 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance Red = EGV-indirect exceedance HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level EGV = Environmental Guideline Value ML = Management Limit DC = Direct Contact HSL

QA/QC replicate of sample listed directly below the primary sample

- Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL b
- EIL criteria applies to DDT only с

Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Commercial/ industrial D

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV	EGV, all land u
HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL	Commercial a
DC	Direct contact HSL D Commercial/Industrial (CRC CARE, 2011)	ML	Commercial a
		EGV-Indir	FGV, all land u

- d uses, direct exposure (HEPA, 2020) al and Industrial (NEPC, 2013)
- al and Industrial (NEPC, 2013)
- d uses, Indirect exposure (HEPA, 2020)

Project 224763.02 June 2024

Table H2: Summary of Laboratory Results of Soil Analysis for Land Use – Priority OCP, Priority OPP, PCB, Priority PFAS, Asbestos

			Priority OCP							Priority OPP	PCB	Priority PFAS Asbestos (FA/AF)						Asbestos, Other								
			DDT+DDE+DDD c	Aldrin + Dieldrin	Total Chlordane	Total Endosulfan	Endrin	Heptachlor	Hexachlorobenze ne	Methoxychlor	Mirex	Chlorpyriphos	Total PCB	Total Positive PFAS	РГОА	PFOS + PFHXS	PFOS	PFHXS	Asb_Sample_mas s	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Asbestos ID in soil >0.1g/kg	Asbestos ID in soil <0.1g/kg	Trace Analysis (NEPC)	
		PQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0001	0.0001	0.0001	0.0001	0.0001				0.001				
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g	g	g	%(w/w)	-	-	-	
313	0.2 m	12/03/24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	889.07	-	-	<0.001	NAD	NAD	NAD	
			3,600 640	45 -	530 -	2,000 -	100 -	50 -	80 -	2,500 -	100 -	2,000 -	7 -									0.001 -				-
313	0.8 m	12/03/24																					-	-	-	
314	0.05 m	12/03/24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	
			3,600 640	45 -	530 -	2,000 -	100 -	50 -	- 08	2,500 -	100 -	2,000 -	7 -													_
314	0.5 m	12/03/24	<0.1 3,600 640	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0001	<0.0001 50 10	<0.0001	<0.0001	<0.0001	-		-		-	-	-	
20/02//			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		-		-					-				-
D2/SBK	0 m	13/03/24	3,600 640	45 -	530 -	2,000 -	100 -	50 -	80 -	2,500 -	100 -	2,000 -	7 -										-	-	-	
314	1.5 m	12/03/24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	-	-	-	-	-	-	
			3,600 640	45 -	530 -	2,000 -	100 -	50 -	- 08	2,500 -	100 -	2,000 -	7 -		50 10	20 -	20 1	20 -								-
315	0.2 m	12/03/24	<0.1 3,600 640	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 2,000 -	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	
			-			-	-			-	-	-	-									-				-
315	0.5 m	12/03/24																					-	-	-	
318	0.1 m	12/03/24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0001	<0.0001	0.0001	0.0001	<0.0001	-	-	-	-	-	-	-	
			3,600 640	45 -	530 -	2,000 -	100 -	50 -	80 -	2,500 -	100 -	2,000 -	7 -		50 10	20 -	20 1	20 -								_
318	1 m	12/03/24	<0.1 3,600 640	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 2,000 -	<0.1	-	-	-	-	-	985.37		-	<0.001	NAD	NAD	NAD	
318	15	12/03/24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				+
318	1.5 m	12/03/24																					-	-	-	
319	0.3 m	20/07/0/		.01	< 0.1	<0.1	<0.1	.01																		
		12/03/24	<0.1	<0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	834.86	-	-	<0.001	NAD	NAD	NAD	
319		12/03/24	3,600 640	45 -	530 -	2,000 -	100 -	50 -	80 -	2,500 -	100 -	2,000 -	7 -									0.001 -	NAD	NAD	NAD	
	0.5 m	12/03/24													· ·		· ·	• • •	834.86				NAD -	NAD	NAD -	-
		12/03/24	3,600 640	45 -	530 -	2,000 -	100 -	50 -	80 -	2,500 -	100 -	2,000	7 -									0.001 -	NAD -	NAD	-	
320	0.5 m 0.2 m		3,600 640 -	45 -	530	2,000 -	100 -	50 -	80	2,500 -	100 -	2,000 -	7 -	 	· ·	 -		 -		 -		0.001	NAD - -			
320	0.2 m	12/03/24	3,600 640 	45 -	530	2,000 - - - - - - <0.1	100 -	50 -	80 - - - - - - - - - - - -	2,500 - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - -	2,000 - <0.1	7 -	 	· ·	 -		 -		 - 		0.001	NAD - -	NAD - -	-	
		12/03/24	3,600 640 <0.1 3,600 640	45 - <0.1 45 -	530 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - <0.1 100 -	50 - - - - - - - - - - - - - - - - - - -	80 -	2,500 -	100 - - - - - - - - - - - - - - - - - - -	2,000 - <0.1 2,000 -	7 - - - - - - - - - - - - - - - - - - -			· · ·				· · · · · · · · · · · · · · · · · · ·		0.001 -	NAD - - -	NAD - -	-	
320	0.2 m	12/03/24	3,600 640 	45	530 - - - - - - - - - - - - -	2,000 - - - - - - <0.1	100 - - - - - - <0.1	50 - 	80 - - - - - - - - - - -	2,500 - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - -	2,000 - <0.1	7 - - - - - <0.1			 	 	 				0.001 -	NAD		-	
320 321 321	0.2 m 0.1 m 0.3 m	12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 <0.1 3,600 640	45 - <0.1 45 -	530 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - <0.1 100 -	50 - - - - - - - - - - - - - - - - - - -	80 - - - - - - - - - - -	2,500 - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - <0.1 2,000 -	7 - - - - - - - - - - - - - - - - - - -			· · ·				· · · · · · · · · · · · · · · · · · ·		0.001 -	NAD - - -	NAD	-	
320	0.2 m 0.1 m	12/03/24 12/03/24 12/03/24	3,600 640 	45 - <0.1 45 - <0.1 45 -	530 - <0.1 530 - <0.1 530 -	2,000 - - - - - - - - - - - - - - - - - -	100 - <0.1 100 - <0.1 100 -	50 - - - - - <0.1	80 - <0.1 80 - <0.1 80 -	2,500 - <0.1 2,500 - <0.1 2,500 -	100 - <0.1 100 - <0.1 100 -	2,000 - 2,000 - -	7 - - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	 							0.001	NAD	NAD	-	
320 321 321	0.2 m 0.1 m 0.3 m	12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 - - - - - - - - - - - - - - - - - - - - - - - - - - - - <	530 - - - - - <0.1	2,000 - 	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - <0.1	80 - - - - - - - - - <0.1	2,500 - - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	7 - - - - - - - - - - - - - - - - - - -				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			0.001 - - - - - - - - - - - - - - - - - - -	NAD NAD NAD	NAD NAD NAD	-	
320 321 321 322 322 322	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 - <0.1 45 - <0.1 45 -	530 - <0.1 530 - <0.1 530 -	2,000 - - - - - - - - - - - - - - - - - -	100 - <0.1 100 - <0.1 100 -	50 - - - - - <0.1	80 - <0.1 80 - <0.1 80 -	2,500 - <0.1 2,500 - <0.1 2,500 -	100 - <0.1 100 - <0.1 100 -	2,000 - 2,000 - -	7 - - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	 							0.001	-	- - - -	- - - -	
320 321 321 322	0.2 m 0.1 m 0.3 m 0.05 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 - - - - - - - - - - - - - - - - - - -	530 - - - - - <0.1	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - <0.1	80 - - - - - - - <0.1	2,500 - - - <01 2,500 - - - <0.1 2,500 - <0.1 2,500 -	100 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	7 - - - - - - - - - - - - - - - - - - -	· · ·				 				0.001 - - - - - - - - - - - - - - - - - - -	-	- - - -	- - - -	
320 321 321 322 322 322 322	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m 1 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 - - - - - - - - - - - - - - - - - - -	530 - - - - - <0.1	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - - - 50 - - -	80 - - - - - - - - - - - - - - - - - - -	2,500 - - - <01 2,500 - - - <0.1 2,500 - <0.1 2,500 -	100 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	7 - - - - - - - - - - - - - - - - - - -	· · ·				 				0.001 - - - - - - - - - - - - - - - - - - -	-	- - - -	- - - -	
320 321 321 322 322 322	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 - - - - - - - - - - - - - - - - - - -	530	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	80 - - -	2,500 - - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	7 - - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0.001 - - - - - - - - - - - - - - - - - - -	-	- - - -	- - - -	
320 321 321 322 322 322 322	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m 1 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 - - - - - - - - - - - - - - - - - - -	530 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - <0.1	80	2,500 - - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	7 - - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	 50 10 		· · ·					0.001 - - - - - - - - - - - - - - - - - - -	-	- - - -	- - - -	
320 321 321 322 322 322 322 322 326	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m 1 m 0.1 m 0.5 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 <0.1 3,600 640 3,600 640 3,600 640 -	45 - - - - - - - - - - - - - - - - - - -	530	2,000 - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	80 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	2,500 - - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - - - - - -	7	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0.001 - - - - - - - - - - - - - - - - - - -	-	- - - -		
320 321 321 322 322 322 322 326 326 324 319 - [TRIPLICATE]	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m 1 m 0.1 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 · · · · · · · · · · · · · · · · · · ·	530 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - - - - - - - - - - - - - - -	80 - - - - - - - - - - - - - - - - - - -	2,500 - - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - 	7				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0.001	-	- - - -	- - - - - - - - - - - -	
320 321 321 322 322 322 322 326 324 319 -	0.2 m 0.1 m 0.3 m 0.05 m 0.3 m 1 m 0.1 m 0.5 m	12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24 12/03/24	3,600 640 	45 · · · · · · · · · · · · · · · · · · ·	530 - - - - - - - - - - - - - - - - - - -	2,000 - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	50 - - - - - - - - - - - - - - - - - - -	80 - - - - - - - - - - - - - - - - - - -	2,500 - - - - - - - - - - - - - - - - - - -	100 - - - - - - - - - - - - - - - - - - -	2,000 - 	7 - - - - - - - - - - - - - - - - - - -				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			0.001	-	- - - -		

Lab result HIL/HSL value EIL/ESL/EGV value 🗧 HIL/HSL exceedance 📕 EIL/ESL exceedance 📒 HIL/HSL and EIL/ESL exceedance 🔳 ML exceedance 💻 ML and HIL/HSL or EIL/ESL exceedance

📕 Indicates that asbestos has been detected by the lab, refer to the lab report 📕 Blue = DC exceedance Red = EGV-indirect exceedance 🗋 HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Not limiting NAD = No Asbestos detected

HL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level EGU = Environmental Guideline Value ML = Management Limit DC = Direct Contact HSL

- QA/QC replicate of sample listed directly below the primary sample
- Naphthalene reported as highest detection from the BTEXN or PAH suite, or if both results <PQL as lowest PQL b
- EIL criteria applies to DDT only с

Site Assessment Criteria (SAC):

SAC based on generic land use thresholds for Commercial/ industrial D

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

HIL	HIL-D (NEPC, 2013 or HEPA, 2020 (PFAS only))	EGV	EGV, all land uses, direct exposure (HEPA, 2020)
HSL (vapour intrusion)	HSL-D (NEPC, 2013)	ESL	Commercial and Industrial (NEPC, 2013)
DC	Direct contact HSL D Commercial/Industrial (CRC CARE, 2011)	ML	Commercial and Industrial (NEPC, 2013)
		E C L L L L	

- mercial and Industrial (NEPC, 2013) mercial and Industrial (NEPC, 2013)
- EGV-Indir EGV, all land uses, Indirect exposure (HEPA, 2020)

Total Asbestos#1	Asbestos Summary
0.1	0.1
g/kg	
<0.1	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
<0.1	-
-	-
<0.1	-
-	-
-	-
-	-
-	-
-	-
<0.1	-
-	-
-	-
-	-
-	-
-	-

Table H3: Summary of Laboratory Results of Soil Analysis for Waste Classification – Metals, TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, PFAS, Asbestos

										_																										
						Metals				Т	RH		BT	EX		PA	н	Phenols		00	:P		OPP	PCB		PI	FAS					Asbe	estos			
			Total Arsenic	Cadmium	Total Chromium	Lead	Mercury (inorganic)	Nickel	TCLP Nickel	TRH C6 - C9	TRH CIO-C36	Benzene	Toluene	Ethylbenzene	Total Xylenes	Benzo(a)pyrene (B(a)P)	Total PAH	Total Phenolics	Scheduled Chemical Waste (standard)	Total Endosulfan	Total Analysed OCP	Mirex	Total Analysed OPP	Total PCB	PFOA	TCLP PFOA	PFOS + PFHXS	TCLP PFOS + PFHXS	Asbestos ID in soil >0.1g/kg	Asbestos ID in soll <0.1g/kg	Trace Analysis (NEPC)	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Total Asbestos#1	Asbestos Summary
		PQL	4	0.4	1	1	0.1	1	0.02	25	50	0.2	0.5	1	1	0.05	0.05	5	0.1	0.1	0.1	0.1	0.1	0.1	0.0001	0.00001	0.0001	0.00001						0.001	0.1	0.001
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L			-	g	g	%(w/w)	g/kg	
313	0.2 m	12/03/24	15	<0.4	14	12	<0.1	24	-	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	NAD	NAD	NAD	-	-	<0.001	<0.1	-
313	0.8 m	12/03/24	<4	<0.4	15	n	<0.1	10	-	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
314	0.05 m	12/03/24	16	<0.4	5	8	<0.1	5		<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
314	0.5 m	12/03/24	<4	<0.4	7	3	<0.1	46	0.07	<25	330	<0.2	<0.5	<1	<1	0.06	4.6	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0001	<0.00001	<0.0001	<0.00001	-	-	-	-	-	-	-	-
D2/SBK	0 m	13/03/24	<4	<0.4	6	4	<0.1	43	- · · ·	<25	350	<0.2	<0.5	<1	<1	<0.05	3.3	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
314	1.5 m	12/03/24	8	<0.4	22	12	<0.1	42	<0.02	<25	<50	<0.2	<0.5	<]	<1	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0001	<0.00001	<0.0001	<0.00001	-	-	-		-	-		-
315	0.2 m	12/03/24	5	<0.4	22	7	<0.1	15	-	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-
315	0.5 m	12/03/24	10	<0.4	31	15	<0.1	21	-	<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-	
318	0.1 m	12/03/24	5	<0.4	9	8	<0.1	51	0.04	<25	<50	<0.2	<0.5	<]	<1	0.06	2.9	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0001	<0.00001	0.0001	<0.00001	-	-	-	-	-	-	-	
318	1 m 1.5 m	12/03/24	14	<0.4	12	10	<0.1	39 10	-	<25	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	NAD	NAD -	NAD -	-	-	<0.001	<0.1	-
310	0.3 m	12/03/24	5	<0.4	16	13	<0.1	10		<25	<50	<0.2	<0.5	<1	<1	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			-	-	NAD	NAD	NAD	-	-	<0.001	<0.1	-
319	0.5 m	12/03/24	<4	<0.4	16	10	<0.1	13		<25	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05						-	-							-		-	-		
320	0.2 m	12/03/24	8	<0.4	18	11	<0.1	16		<25	<50	<0.2	<0.5	<1	<1	<0.05	< 0.05		-			-		-					-		-		-	-		
321	0.1 m	12/03/24	6	<0.4	12	10	<0.1	15	-	<25	<50	<0.2	<0.5	<]	<1	<0.05	0.99	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				-	-				-	-		-
321	0.3 m	12/03/24	4	<0.4	12	7	<0.1	5		<25	<50	<0.2	<0.5	<]	<1	< 0.05	< 0.05				-	-						-			-		-	-		
322	0.05 m	12/03/24	4	<0.4	9	5	<0.1	77	0.09	<25	<50	<0.2	<0.5	<]	<1	<0.05	0.1	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.0001	<0.00001	0.0002	<0.00001	-	-	-		-	-		-
322	0.3 m	12/03/24	5	<0.4	17	9	<0.1	10		<25	<50	<0.2	<0.5	<]	<1	<0.05	< 0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			-	-	NAD	NAD	NAD	-	-	<0.001	<0.1	-
322	1m	12/03/24	5	<0.4	22	7	<0.1	10	-	<25	<50	<0.2	<0.5	<]	<1	<0.05	<0.05	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
326	0.1 m	12/03/24	<4	<0.4	9	7	<0.1	18	-	<25	1,100	<0.2	<0.5	<]	<1	0.08	6.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
324	0.5 m	12/03/24	7	<0.4	11	n	<0.1	n	-	<25	<50	<0.2	<0.5	<]	<1	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
319 - [TRIPLICATE]	0.3 m	12/03/24	<4	<0.4	12	10	<0.1	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
322 - [TRIPLICATE]	0.3 m	12/03/24	5	<0.4	17	8	<0.1	7	-	-		-	-	-		-	-	-	-		-	-	-	-		-	-			-	-	-	-	-		-
																	Su	Immary Statist	ics																	
	Min		4	0.4	5	3	0.1	5	0.02	25	50	0.2	0.5	1	1	0.05	0.05	5	0.1	0.1	0.1	0.1	0.1	0.1	0.0001	0.00001	0.0001	0.00001	-	-	-	-	-	-	-	-
	Max		16	0.4	31	15	0.1	77	0.09	25	1,100	0.2	0.5	1	1	0.08	6.9	5	0.1	0.1	0.1	0.1	0.1	0.1	0.0001	0.00001	0.0002	0.00001	-		-	-	-	-	-	-
	Mean		7	0.4	14	9	0.1	22	0.06	25	128	0.2	0.5	1	1	0.05	0.93	5	0.1 f	0.1	0.1	0.1	0.1	0.1	0.0001	0.00001	0.0001	0.00001	-	-	-		-	-	-	-
	cT		100		300	100		10			20.000	10		600	1000			Classification (50											1	
	CTI SCCI		100	20	100	100	4	40	-	650	10,000	10	288	600	1000	0.8	200	288	<50	60	-	-	4	<50	-		-	-	-	-	-		-	-	-	
	TCLP1		500	100	1,900	1,500	50	1,050	-	650	10,000	18	518	1,080	1,800	10	200	518	<50	108	-	-	7.5	<50	18	- 0.5	1.8	- 0.05							-	-
	CT2		- 400	- 80	- 400	- 400	- 16	- 160	2	- 2,600	- 40,000	- 40	- 1,152	- 2,400	- 4,000	- 3.2	- 800	- 1,152	- <50	- 240	-	-	- 16	- <50	-		-		-	-	-	-	-	-	-	-
	SCC2		2,000	400	7,600	6,000	200	4,200		2,600	40,000	72	2,073	4,320	7,200	23	800	2,073	<50	432	-	-	30	<50	72	-	72	-	-	-	-	-	-	-	-	-
	TCLP2		2,000	400	7,600	-	200	4,200	- 8	2,600	40,000	- 12	2,075	4,520	7,200	- 25	- 800	2,075		452	-	-		<50	- 12	2	12	0.2	-		-	-	-	-	-	-
			-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	0.2	-	-	-	-	-	-	-	

🗌 CTI exceedance 📕 TCLPI and/or SCCI exceedance 📄 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

- = Not tested, no criteria or not applicable NAD = no asbestos detected

Notes:

- a QA/QC replicate of sample listed directly below the primary sample
- b Total chromium used as initial screen for chromium(VI).
- C Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

d Criteria for scheduled chemicals used as an initial screen

e Criteria for Chlorpyrifos used as initial screen

f NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste

PQL Practical quantitation limit

CTI Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

SCC1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together. General solid waste

TCLP1 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together. General solid waste

CT2 Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste

SCC2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

TCLP2 Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Appendix I

Data Quality Assurance and Quality Control Report Chain of Custody Sample Receipt

1. Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included in at the end of this appendix.

ltem	Evaluation / acceptance criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	10% of primary samples; <30% RPD	PC
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Laboratory Duplicate	1 per lab batch; As laboratory certificate	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table 1: Field and laboratory quality control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in Table QA1 (results in bold). The exceedances are not, however, considered to be of concern given that:

- The actual differences in the concentrations of the replicate pairs where RPD exceedances occurred were typically low;
- The replicate pairs were collected from fill soils which by its nature are heterogeneous;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater analytical variability between replicate pairs can be expected;
- Most of the recorded concentrations were relatively close to the PQL;
- The majority of RPD results from a replicate pair were within the acceptable limits; and

• All other QA/QC parameters met the data quality indicators.

Ina addition to the above, the following was noted in the laboratory testing report 346557:

- The laboratory RPD acceptance criteria has been exceeded for 346557-11 (319/0.3) for Zn. Therefore a triplicate result has been issued as laboratory sample number 346557-22;
- The laboratory RPD acceptance criteria has been exceeded for 346557-17 (322/0.3) for Ni and Pb. Therefore a triplicate result has been issued as laboratory sample number 346557-23;
- TRH Soil C10-C40 NEPM # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 346557-21 may have caused interference.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

2. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQI) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present on-site;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Table 2: Data quality indicators

Data quality indicator	Method(s) of achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of borehole logs, sample location plan and chain of custody records.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern (COPC) identified in the conceptual site model (CSM).
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler(s) used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQO.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Acceptable RPD between original samples and replicates.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all field and laboratory QC samples.

Based on the above, it is considered that the DQI have been generally complied with.

3. Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQI it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

4. **References**

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Table QA1: Relative Percentage Difference Results - Soil Sampling

									Priority	y metals					Priorit	ty PAH							PA	н								Prior	ityTRH			Т	RH
Lab Repor No	Sample ID	Depth	Sample Date	Sample Type	Units	Total Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Naphthalene b	Benz o(a)pyrene (B(a)P)	Benzo(a)pyrene TEQ (B(a)P TEQ)	Total PAH	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(g, h,i)perylene	Chrysene	Dibenzo(a,h)anthrace ne	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C 10-C 16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	TRH C6 - C9	TRH C10-C36
346557	314	0.5 m	12/03/24	Soil	mg/kg	<4	<0.4	7	18	3	<0.1	46	7	<1	0.06	<0.5	4.6	<0.1	<0.1	<0.1	0.4	<0.1	0.3	<0.1	1	<0.1	<0.1	1.8	0.6	<25	<50	<25	<50	280	<100	<25	330
346557	D2/SBK	0 m	13/03/24	Soil	mg/kg	<4	<0.4	6	17	4	<0.1	43	9	<1	<0.05	<0.5	3.3	<0.1	<0.1	<0.1	0.2	<0.1	0.2	<0.1	0.7	⊲0.1	⊲0.1	1.3	0.4	<25	<50	<25	<50	290	<100	<25	350
			Difference		mg/kg	0	0	1	1	1	0	3	2	0	0.01	0	13	0	0	0	0.2	0	0.1	0	0.3	0	0	0.5	0.2	0	0	0	0	10	0	0	20
			RPD		%	0%	0%	15%	6%	29%	0%	7%	25%	0%	18%	0%	33%	0%	0%	0%	67%	0%	40%	0%	35%	0%	0%	32%	40%	0%	0%	0%	0%	4%	0%	0%	6%

Table QAI: Relative Percentage Difference Results - Soil Sampling (continued)

						Priority phenols	5				P rio rity OCP							00	P			PriorityOPP								OPP							
Lab Report No	Sample ID	Depth	Sample Date	Sample Type	Units	Total Phenolics	DDT+DDE+DD D ^c	Aldrin + Dieldrin	T ot al Chlordane	Total Endosulfan	Endrin	Heptachior	Hexachlorobe nzene	Methoxychior	Mirex	Heptachlor Epoxide	Endrin Aklehyde	alpha-BHC	beta-BHC	delta-BHC	Lindane	Chlorpyriphos	Azinphos methyl (Guthion)	Bromophos- ethyl	Chlorpyriphos- methyl	Diazinon	Dichlorvos	Dimethoate	Ethion	Ronnel (fenchlorphos)	Fenitrothion	Fenthion	Malathion	Parathion	Parathion- methyl	Methidathion	Fenamiphos
346557	314	0.5 m	12/03/24	Soil	mg/kg	<5	<0.1	⊲0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1
346557	D2/SBK	0 m	13/03/24	Soil	mg/kg	<5	<0.1	⊲0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	⊲0.1	<0.1	<0.1	<0.1	<0.1	⊲0.1	<0.1	⊲0.1	<0.1	<0.1
			Difference		mg/kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			RPD		%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Appendix I Page 1 of 1

CHAIN OF CUSTODY DESPATCH SHEET

Projec		224763.			Suburb:		Musw	ellbrook					To:	Enviro	lab Ser	vices	
	ct Manager:	Michae	l Gawn		Order N	umber:	NC232	2573	San	pler:	SBK		1	12 Ash	ley St, C	Chatsw	000 NSW 2067
Email		Michae	l.Gawn@	douglasp	artners.co	m.au							Attn:	•	e Rece	•	
Turna	round time	🗹 Standa	ard 🔡		48 hour	24 hour		Same day						(02) 99	910 620	0	samplereceipt@envirolab.cor
Prior S	Storage 🗸 _F	ridge 🗌	Freezer	🗌 Esky 🛛		Do samples	contai	n 'potentia	I' HBM?	7	<u>No</u>	🗌 YefsY	ES, han	dle, tran	sport, st	ore in a	ccordance with FPM HAZID)
	San	nple ID		ed	Sample	Container					Analyte	es					
				Ē		Type						<u> </u>					· · · · · · · · · · · · · · · · · · ·
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Combo 8	Combo 3	Absestos NEPM (500ml)								Notes/ Preservation/ Additional Requirements
1	313	0.2	0.2	12/03/24	s	G,P	×		×								
2	313	0.8	0.8	12/0 3/2 4	s	G,P		x	1								
3	314	0. 0 5	0. DS	12/03/24	S	G,P	×	T.									
4	314	0.5	0.5	12/03/24	S	G,P	×										
S	314	1.5	1.5	12/03/24	S	G,P	х	X.	1								
þ	315	0.2	0.2	12/03/24	S	G,P	х										
7	315	0.5	0.5	12/0 3/2 4	S	G,P		x									
R	318	0.1	0.1	12/0 3/2 4	5	G,P	x		1						€กุงเป็		Envirolab Services 12 Ashley St
9	318	1.0	1.0	12/03/24	S	G,P	x		x						Job	No: 7(1	hatswood NSW 2067 Ph: (02) 9910 6200 165 346 557
10	318	1.5	1.5	12/03/24	s	G,P		x							Date I	Received	オモノフノフレ
(319	0.3	0.3	12/03/24	s	G,P	x		×		-				Kecel	ved By:	1045 Cu
n	319	0.5	0.5	12/03/24	5	G,P		x							Temp(Coolir		bient SC.
13	320	0.2	0.2	12/03/24	S	G,P		x							Secur	ty: ntact	Broken/None
14	32]	0.1	0.1	12/03/24	S	G,P	х	•				1					
	s to analyse				u, Pb, Hg,	•								LAB F	RECEIP	<u>די</u>	
	er of samp					Transport	ed to	laborato	ry by:	cour	er			Lab R	ef. No	341	557
	results to:			-										Recei	ved by	1° Ch	atily Ho
Addre			emon Clo	se, Warabr	ook NSW 2		· · ·	960 9600						Date	& Time	10/	1/24 1045
Reling	uished by:	SBK				Date:	14/03/	2024	Sigr	ned: 🦯	2			Signe	d:4	·	

.

۰.

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	224763.	.02		Suburb:		Mūśw	ellbro	ok	<u> </u>							ervices
Proje	ct Manager	Michae	l Gawn											Dispa	tch da	ate:	45365
		nple ID		pled	Sample Type	Container Type			-	A	nalyte	S					
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M -	ISS Stic	Combo B	Combo 3	Absestos NEPM (500ml)								Notes/ Preservation/ Additional Requirements
15	321	0.3	0.3	12/03/24	S	G,P		x					l				L
6)	322	0.05	0.05	12/03/24	S	G,P	х										
17	322	0.3	0.3	12/03/24	S	G,P	х		x		-						#346557. CH 15/3/24.
(B	322	1.0	1.0	12/03/24	S	G,P		x									94 15/3/24
Iq	323	0.1	0.1	12/03/24	S	G,P	•	x									
lo	324	0.5	0.5	12/03/24	S	G,P		· x			-						
21	D2/SBK			13/03/24	S	G,P	х										
										_							
	-															-	
										÷						°r	
							-										
	~~														1		
		1															
									l								

.

.

346557-A due 5/4/24

	ct No:	224763			Suburb:		Musw	elibrool	<					To:	Enviro			
	ct Manager	Patrick	Heads		Order N	umber:				Sam	oler:	SBK						vood NSW 2067
Email		patrick)douglas									_	Attn:	Samp			
Turna	around time	Standa	ard 🗸	72 hour	48 hour	24 hour		Same da							(02) 99	910 620	0	samplereceipt@envirolab.cor
Prior	Storage 🗸 Fr	idge 🗌	Freezer	Esky	Shelf	Do samples	contair	1 'potent	tiaľ HB	M?	~	No	∐(¥es∈	S, hand	e, trans	oort, sto	re in ac	cordance with FPM HAZID)
	San	nple ID		g	Sample	Container -					A	nalyte	es					
			<u> </u>	ģ					10	r –	γ	r –					-	-
Lab ID	Location / Other ID	Depth From	Depth To	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	TCLP N	PFAS short suite	TCLP PFAS									Notes/ Preservation/ Additional Requirements
4	314	0.5	0.5	12/03/24	S	G	×	×	×									
Ŝ	314	1.5	1.5	12/03/24	S	G	×	×	×									
8	318	0.1	0.1	12/03/24	5	G	×	×	×					}	}			
16	32 2	0.05	0.05	12/03/24	5	G	×	×	×					Į –				
_																		
					-													
															-			
i i												-						
											-		1	1				
										ŀ			1					
					·								1					
				-														
	ls to analyse		<u> </u>	l		L		1f				1	I	<u> </u>		RECE		
	per of samp				at lab	Transport	ed to	labora	tory t	oy:	-	at lab				ef. No		
	results to:									<u> </u>	_					ved b	-	
Addre		15 Callist	emon Clo	se, Warabro	ook NSW 23		(02) 49	960 960	0							& Tim	(
Reline	quished by:		_			Date:				Signe	ed:				Signe	d:		

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Project No: '	22476	3.02				Client Pro	ject	Nam	e: P	vopo	5-00	1 Mc	suel	(ניסיט)	r Subst	ation		
Client: Au	regnd					Location:	2	0	Sanc	ly (ne.	ek_	Koac	ş				
Project Manag	er: MF	9)			DP L	ab Re	ceived	By:		Date:
Do samples co	ontain 'pot	ential' HBN	l?Yes 🗆	No 🗆 (If YES	, then hand	le, tr	ansp	ort an	d store	in a	iccordai	nce wit	h FPM	HAZID)			
				Field	<u> </u>								DP	Lab	Fc	or Despatch	to	Notes
Sample	Depth	Duplicate	Sample Type		tainer /pe	ASS			Sa	mpling	1			rage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	
ID	(m)	Sample	S - soil W - wate	1	glass Iastic	Samples	E	Ву	D	ate		Time		cn *	Date	Date	Date	
313	0.2		5	G,	q		58	44	12/3	124	8.	-30	Friday	lay 03				
	0.8											1)				
<u> </u>	1.5																	
314	0.05	۸																
	0.5	D2/SBK																
	1.5																	
	2.5																	
315	0.2																	
	0.5																	
	1.0													ĺ				
Ľ	2.0																	
316	0.2																	
1	0.7																	
	1.2																	
V	1.7								İ									
317	0.1											/						
	0.6		\mathbf{V}	<u>ا</u>	2		V	/			3.		Īι	/				

* Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

A Provide name of Lab 1

C Provide name of Lab 3

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Project No:	2247	163.02			Client Pro	oject N	lame	e: prov	00:	sed	Mush	ellbrouk	2 Subst	ahan	
Client: Project Mana	Ausqued				Location:	20	0	Sand,	(heel	Los,				<u></u>
Project Mana	ager: V							J			DP Lab R	eceived	By:	[Date:
Do samples	contain 'pot	ential' HBN	I? Yes 🗹	No □ (If YE	S, then hand	dle, tra	nspo	ort and sto	e in	accorda	ance with FPI	M HAZID)			
				Field							DP Lab	F	or Despatch	to	Notes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS			Samplir	ng		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	1	By	y	Date		Time	Locn *	Date	Date	Date	
317	1.5		5	G,P		60	1<	12/3/2	4 9	8:30	Fridge/Bay				
318	0.1)	1						1	163 ~				
	0.5														
	٥.١									_					
	1.5	D3/SBK													
319	0.1														
	0.3														
	0.5														
	1.6														
320	0.2														
	0.7														
	1.5														
321	0.1														
	0.3														
	1.0														
322	0.05									V					
	0.3		V				(\checkmark	•	3°. O					

* Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

B Provide name of Lab 2

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Project No: 🥢	224763	y-07_					Client Pro	oject	Nam	ie:	Prop	05	ed	Mieg	Marce	ik Sub By:	state	
Client:	Ausq	nd					Location:		0	Ś	ando	-1	Cre	eh p	Gad		~ .	
Project Manag	er: pr	· G										<i>,</i>		DP Lab R	eceived	By:		Date:
Do samples co	ontain 'pot	ential' HBN	!? Ye	es 🗆 N	lo 🗆	(If YES	, then hanc	lle, tr	ansp	ort an	d store	in ac	cordar	nce with FPN	1 HAZID)			
					Fiel	d								DP Lab	Fo	or Despatch	to	Notes
Sample	Depth	Duplicate		mpl e ype		itainer ype	ASS			Sa	Impling			Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	
ID	(m)	Sample		· soil water		glass plastic	Samples		Ву	D	ate	T	ime	Locn *	Date	Date	Date	
322	1.0		1	:	Cy	P		SP	Ύ	12/2	1/24	87	30	6nd 201 10				
	2.0													1				
323	0.1																	
	0,3																	
	1.0														· · · · · · · · · · · · · · · · · · ·			
\bigvee	2.5																	
324	0.2	P1/SBK																
B	0.5												/					
	1.0		۲ ۲	/		/			1	۱	y	3.	00					
											••••••••••••••••••••••••••••••••••••••							
					_													

* Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

A Provide name of Lab 1

B Provide name of Lab 2

C Provide name of Lab 3

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Michael Gawn

Sample Login Details	
Your reference	224763.02, Muswellbrook
Envirolab Reference	346557
Date Sample Received	15/03/2024
Date Instructions Received	15/03/2024
Date Results Expected to be Reported	22/03/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	21 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	5
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

313-0.8 ✓ </th <th>Sample ID</th> <th>VTRH(C6-C10)/BTEXN in Soil</th> <th>svTRH (C10-C40) in Soil</th> <th>PAHs in Soil</th> <th>Organochlorine Pesticides in soil</th> <th>Organophosphorus Pesticides in Soil</th> <th>PCBs in Soil</th> <th>Acid Extractable metalsin soil</th> <th>Misc Soil - Inorg</th> <th>Asbestos ID - soils NEPM</th>	Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM
314-0.05 \checkmark	313-0.2	✓	✓	✓	✓	\checkmark	✓	✓	✓	✓
314-0.5 ✓ </th <td>313-0.8</td> <td></td> <td>✓</td> <td>✓</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	313-0.8		✓	✓						
314-1.5 \checkmark <	314-0.05			✓		\checkmark	✓		✓	
315-0.2 \checkmark <	314-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
315-0.5 \checkmark <	314-1.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
318-0.1 \checkmark <	315-0.2	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	
318-1.0 \checkmark <	315-0.5	\checkmark	\checkmark	\checkmark				\checkmark		
318-1.5 ✓ </th <td>318-0.1</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td>	318-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
319-0.3 ✓ </th <td>318-1.0</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>✓</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td>	318-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark
319-0.5 ✓ </th <td>318-1.5</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td>	318-1.5	\checkmark	\checkmark	\checkmark				\checkmark		
320-0.2 ✓ </th <td>319-0.3</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>✓</td> <td>\checkmark</td>	319-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
321-0.1 ✓ </th <td>319-0.5</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td></td>	319-0.5	\checkmark	\checkmark	\checkmark				\checkmark		
321 -0.3 ✓<	320-0.2	\checkmark	\checkmark	\checkmark				\checkmark		
322-0.05 ✓<	321-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
322-0.3 \sigma	321 -0.3	\checkmark	\checkmark	\checkmark				\checkmark		
322-1.0 ✓ </th <td>322-0.05</td> <td>\checkmark</td> <td>✓</td> <td>✓</td> <td>✓</td> <td>\checkmark</td> <td>✓</td> <td></td> <td>· ·</td> <td></td>	322-0.05	\checkmark	✓	✓	✓	\checkmark	✓		· ·	
326-0.1 ✓ </th <td>322-0.3</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>✓</td> <td>\checkmark</td> <td>✓</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td>	322-0.3	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark
324-0.5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	322-1.0	\checkmark	\checkmark	\checkmark				\checkmark		
	326-0.1	\checkmark	\checkmark	\checkmark				\checkmark		
D2/SBK $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$	324-0.5	\checkmark	\checkmark	\checkmark				\checkmark		
	D2/SBK	\checkmark	\checkmark	✓	✓	\checkmark	✓	\checkmark	✓	

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads

Sample Login Details	
Your reference	224763.02, Muswellbrook
Envirolab Reference	346557-A
Date Sample Received	15/03/2024
Date Instructions Received	02/04/2024
Date Results Expected to be Reported	05/04/2024

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	additional testing
Turnaround Time Requested	3 days
Temperature on Receipt (°C)	5
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	PFAS in Soils Short	pH of soil for fluid#deterr	pH of soil TCLP (after HC	Extraction fluid used	pH of final Leachate	Nickel	PFAS in TCLP Short	On Hold
313-0.2								✓
313-0.8								✓
314-0.05								\checkmark
314-0.5	 ✓ 	✓	✓	✓	✓	✓	\checkmark	
314-1.5	✓	✓	✓	✓	✓	✓	\checkmark	
315-0.2								✓
315-0.5								\checkmark
318-0.1	✓	✓	✓	✓	✓	✓	\checkmark	
318-1.0								✓
318-1.5								✓
319-0.3								✓
319-0.5								✓
320-0.2								✓
321-0.1								✓
321 -0.3								✓
322-0.05	✓	✓	✓	✓	✓	✓	✓	
322-0.3								✓
322-1.0								✓
326-0.1								✓
324-0.5								✓
D2/SBK								✓
319 - [TRIPLICATE]-0.3								✓
322 - [TRIPLICATE]-0.3								\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

ABN 37 112 535 645

Envirolab Services Pty Ltd

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au